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ABSTRACT 

This thesis is a study on the ability of towed sonar arrays to resolve the PS 

(port/starboard) ambiguity problem, and focuses on a twin-line planar array and a linear 

array of triplets. A twin-line planar array is employed in underwater surveillance. The 

goal is to offer the reader a comprehensive understanding of the method used for the 

solution of the PS ambiguity problem concerning the beamformer’s complex weights, 

operating frequency and limit on beam steering. 

Initially, the basic characteristics and functional blocks, and technical and 

operational peculiarities of towed linear sonar arrays, are presented, and then a single 

triplet, a linear array of triplets, and a twin-line planar array are respectively examined in 

detail. 

The research consists of mathematical modeling of the elements and the arrays, 

calculation of beam patterns for study cases, and signal processing simulations 

programmed in MATLAB. The simulations make use of a signal generator designed to 

assess the performance of the twin-line planar array. The generator provides the reader 

with a systems view of the array operation, taking into account the characteristics of the 

target and medium. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. MOTIVATION ................................................................................................1 
B. PROBLEM STATEMENT .............................................................................1 
C. LITERATURE REVIEW ...............................................................................3 

1. Background ..........................................................................................3 
2. Implementations ...................................................................................6 

D. METHODOLOGY AND THESIS ORGANIZATION ................................8 

II. ANALYSIS OF A SINGLE TRIPLET ....................................................................11 
A. SINGLE TRIPLET ........................................................................................11 
B. FAR-FIELD BEAM PATTERNS ................................................................12 

1. Far-Field Beam Patterns with no Phase Weights ...........................13 
2. Far-Field Beam Patterns with Phase Weights .................................14 
3. Beam Pattern vs. Frequency .............................................................15 
4. Radius of the Triplet ..........................................................................21 

III. LINEAR ARRAY OF TRIPLETS ...........................................................................23 
A. LINEAR ARRAY...........................................................................................23 
B. FAR-FIELD BEAM PATTERNS ................................................................24 

IV. TWIN-LINE PLANAR ARRAY ..............................................................................35 
A. DEFINITION .................................................................................................35 
B. HORIZONTAL FF BEAM PATTERNS .....................................................37 
C. SUB-ARRAY ..................................................................................................40 
D. HORIZONTAL FF BEAM PATTERNS USING SUB-ARRAYS ............44 

1. No Beam Steering ...............................................................................44 
2. With Beam Steering ...........................................................................45 

V. SIGNAL GENERATOR AND FFT BEAMFORMING ........................................49 
A. SOUND-SOURCE..........................................................................................49 
B. MEDIUM ........................................................................................................53 
C. TWIN-LINE PLANAR ARRAY ..................................................................55 
D. FFT BEAMFORMING .................................................................................59 
E. BEAM PATTERNS USING TWO-DIMENSIONAL SPATIAL FFT .....62 

VI. SIGNAL GENERATOR SIMULATIONS ..............................................................67 
A. SIGNAL GENERATOR SETTINGS ..........................................................67 

1. Medium ...............................................................................................67 
2. Twin-Line Planar Array....................................................................67 
3. Sound-Source .....................................................................................68 

B. SIMULATIONS .............................................................................................69 
1. Target’s Bearing Angle Estimation based on Time-Average 

Power ...................................................................................................70 
a. Target at Sψ = 15° ...................................................................70 



 viii 

b. Target at Sψ = 55° ...................................................................72 
2. Estimation of the Target’s Bearing Angle using the Far-Field 

Beam Pattern ......................................................................................76 

VII. CONCLUSIONS ........................................................................................................81 
A. SUMMARY ....................................................................................................81 
B. FUTURE WORK ...........................................................................................82 

APPENDIX. DERIVATION OF THE STANDARD DEVIATION FOR A GIVEN 
SNR..............................................................................................................................85 

LIST OF REFERENCES ......................................................................................................87 

INITIAL DISTRIBUTION LIST .........................................................................................89 

 

 



 ix 

LIST OF FIGURES 

Figure 1 Port/starboard ambiguity problem. ....................................................................2 

Figure 2 Towed sonar array (adapted from [4]). ..............................................................5 

Figure 3 (a) Linear array of triplets, and (b) a twin-line planar array. .............................6 

Figure 4 (a) Right-handed Cartesian coordinate system, and (b) a single triplet in 
the XZ plane. ....................................................................................................12 

Figure 5 (a) Unnormalized, horizontal FF beam pattern in the XY plane with no 
phase weights as a function of bearing angle ψ , and (b) unnormalized, 
vertical FF beam pattern in the XZ plane with no phase weights as a 
function of vertical angle θ . ............................................................................14 

Figure 6 (a) Unnormalized, horizontal FF beam pattern in the XY plane steered to 
starboard side, and (b) unnormalized, vertical FF beam pattern in the XZ 
plane steered to starboard side. ........................................................................15 

Figure 7 (a) Unnormalized, horizontal FF beam pattern in the XY plane steered to 
port side, and (b) unnormalized, vertical FF beam pattern in the XZ plane 
steered to port side. ..........................................................................................15 

Figure 8 Unnormalized, horizontal FF beam patterns in the XY plane vs. bearing 
angle ψ and frequency. ....................................................................................17 

Figure 9 Equalized, horizontal FF beam patterns in the XY plane vs. bearing angle 
ψ  and frequency. .............................................................................................19 

Figure 10 Linear array of triplets. ....................................................................................23 

Figure 11 Equalized, horizontal FF beam patterns in the XY plane of a linear array of 
11 triplets vs. frequency and bearing angle ψ , with no beam steering. ..........26 

Figure 12 Equalized, horizontal FF beam patterns in the XY plane of a linear array of 
11 triplets vs. frequency and bearing angle ψ , with no beam steering. ..........28 

Figure 13 Equalized, horizontal FF beam patterns in the XY plane of a linear array of 
11 triplets vs. frequency and bearing angle ψ , steered to 15°. .......................28 

Figure 14 Equalized, horizontal FF beam patterns in the XY plane of a linear array 
of 11 triplets vs. frequency and bearing angle ψ , steered to 30°. ...................30 



 x 

Figure 15 Equalized, horizontal FF beam patterns in the XY plane of a linear array 
of 11 triplets vs. frequency and bearing angle ψ , steered to 45°. ...................31 

Figure 16 Equalized, horizontal FF beam patterns in the XY plane of a linear array 
of 11 triplets vs. frequency and bearing angle ψ , steered to 60°. ...................32 

Figure 17 Twin-line planar array lying in the XY plane (adapted from [9, Ch. 8, 
Example 8.2-1], Figure 8.2-2)..........................................................................36 

Figure 18 Normalized, horizontal FF beam pattern in the XY plane of the twin-line 
planar array with six elements per line vs. bearing angle ψ , for f  = 1000 
Hz, with no beam steering. ..............................................................................38 

Figure 19 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array with six elements per line vs. bearing angle ψ , with no beam 
steering, for f  equal to (a) 800 Hz, (b) 700 Hz, (c) 500 Hz, and (d) 120 
Hz. ....................................................................................................................39 

Figure 20 Twin-line planar array using three sub-arrays. ................................................42 

Figure 21 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array vs. bearing angle ψ , using sub-arrays, with no beam steering, 
for operational frequencies (a) 140 Hz, (b) 180 Hz, (c) 220 Hz, and (d) 
900 Hz. .............................................................................................................45 

Figure 22 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array vs. bearing angle ψ , using a sub-array frequency of 200 Hz, 
and beam steered to (a) 0°, (b) 15°, (c) 30°, (d) 40° and (e) 50°. ....................46 

Figure 23 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array vs. bearing angle ψ , using a sub-array frequency of 220 Hz, 
and beam steered to (a) 0°, (b) 15°, (c) 30°, and (d) 40°. ................................47 

Figure 24 System composed of the signal generator and the twin-line planar array 
(based on [9, Sec. 7.2–7.4 and Sec. 8.5]). ........................................................50 

Figure 25 Sound-source and the twin-line planar array lying in the XY plane. ................52 

Figure 26 Attenuation coefficient ( )fα in Np/m  vs. frequency in kHz. ........................53 

Figure 27 Normalized magnitude of ˆ ( , , )q r sR  as a function of direction cosines u  
and v , (a) with no beam steering) and (b) using correct beam steering. .........65 

Figure 28 Receiving response of the Cetacean Research™’s C55 hydrophone 
(adapted from [13]). .........................................................................................68 



 xi 

Figure 29 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array vs. bearing angle ψ , for the carrier frequency 1000 Hz, and 
beam steered to (a) 15° and (b) 55°. ................................................................70 

Figure 30 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the target 
located at Sψ  = 15°, with (a) no noise, (b) SNR = +3 dB, (c) SNR = 0 dB 
and (d) SNR = –3 dB. ......................................................................................71 

Figure 31 Received electrical signal from element (1, 2) before complex weighting [
( ,1, 2)r t′  in red], in V, and output electrical signal from element (1, 2) due 

to the target only before complex weighting [ ( ,1, 2)Trgty t′  in blue], in V, 
versus time t  , in msec. ....................................................................................72 

Figure 32 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′ for the target 
located at Sψ  = 55°, with (a) no noise, (b) SNR = +3 dB, (c) SNR = 0 dB 
and (d) SNR = –3 dB. ......................................................................................73 

Figure 33 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the target 
located at Sψ  = 65°, with (a) no noise and (b) SNR = –3 dB. .........................74 

Figure 34 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the target 
located at Sψ  = 75°, with (a) no noise and (b) SNR = –3 dB. .........................74 

Figure 35 Normalized, horizontal FF beam patterns in the XY plane of the twin-line 
planar array vs. bearing angle ψ , for the carrier frequency 1000 Hz, and 
beam steered to (a) 65° and (b) 75°. ................................................................75 

Figure 36 Normalized, magnitude of the frequency-and-angular spectrum ˆ( , , )q r sR  
of the twin-line planar array vs. direction cosines u  and v , for f  = 1000 
Hz, ( , )S Sθ ψ  = (90°, 55°), with no additive noise and no beam steering. .......77 

Figure 37 Normalized, magnitude of the frequency-and-angular spectrum ˆ( , , )q r sR  
of the twin-line planar array vs. direction cosines u  and v , for f  = 1000 
Hz, ( , )S Sθ ψ  = (90°, 55°), and no additive noise, steered to ψ ′  equal to (a) 
40 ° and (b) 55 °. ..............................................................................................77 

Figure 38 Normalized, magnitude of the frequency-and-angular spectrum ˆ( , , )q r sR  
of the twin-line planar array vs. direction cosines u  and v , for f  = 1000 
Hz, ( , )S Sθ ψ  = (90°, 15°), no beam steering, with (a) no noise and (b) 
additive noise with SNR = –3dB. ....................................................................78 



 xii 

Figure 39 Normalized, magnitude of the frequency-and-angular spectrum ˆ( , , )q r sR  
of the twin-line planar array vs. direction cosines u  and v , for f  = 1000 
Hz, ( , )S Sθ ψ  = (90°, 65°), no beam steering, with (a) no noise and (b) 
additive noise with SNR = –3dB. ....................................................................79 

 

  



 xiii 

LIST OF TABLES 

Table 1 Radius of the single triplet vs. frequency.........................................................21 

Table 2 Parameters for the three sub-arrays in Figure 21. ............................................43 

 

 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

ATM Asynchronous Transfer Mode 

AWGN additive white Gaussian noise 

CW continuous wave 

DAC digital-to-analog converter 

DFT discrete Fourier transform 

DOA direction of arrival 

DSP digital signal processing 

DTMB David Taylor Model Basin 

FF far-field 

FORA Five Octave Research Array 

FFT fast Fourier transform 

HFM hyperbolic frequency modulation 

LFAS low frequency active sonar 

LFM linear frequency modulation 

NATO North Atlantic Treaty Organization 
NF near-field 

NURC NATO Undersea Research Centre 

ONR Office of Naval Research 

PS port/starboard 

RN radiated noise 

RNL radiated noise level 

RS receiver sensitivity 

RSL receiver sensitivity level 

SONET Synchronous Optical Network 

SPL sound pressure level 

UUV unmanned undersea vehicle 

WSS wide-sense stationary 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xvii 

ACKNOWLEDGMENTS 

I thank God and the Brazilian Navy for granting me this honorable and edifying 

opportunity to study at the Naval Postgraduate School, where I extended and deepened 

my knowledge on underwater acoustics, signal processing and sonar systems. Attending 

thesis presentations and colloquia on innovative research solutions and emerging 

technologies further expanded my horizons. This two-year long and winding road has 

also been an enriching experience on American culture and international diversity, and I 

only regret not having had enough time to enjoy this amazingly beautiful Monterey Bay 

area. 

I’m very grateful to Prof. Ziomek, who patiently advised me for more than one 

year with weekly follow-up meetings, and gave me invaluable hints on research 

methodology and analysis, as well as technical writing in English, with his systematical 

and undisturbed way of working. In this scientific and cultural journey at NPS I owe so 

much to my devoted physics instructors, Prof. Daphne Kapolka, Prof. Denardo, Prof. 

Harkins, Prof. Baker, Prof. Larraza, Prof. Grbovic, Prof. Smith and Prof. Borden; and in 

the ECE Department, Prof. Fargues, Prof. Cristi, Prof. Romero and Prof. Hutchins, as 

well as to the competent technical staff. To the International Graduate Programs Office, 

for its inestimable support, and to the personnel of the Dudley Knox Library, a sacred 

temple of knowledge and study—which turned out to be my second home in America. 

Despite all my efforts, I wouldn’t be here without the love and support of my 

family: my beloved mother, Lourdes; great aunt Henriqueta; uncle-father João 

(“Johnny”) and aunt-mother Ana Maria; and sisters, Nádia and Liú. 

Finally, to my masters of all times, my father, Antônio de Pádua, and my brother, 

Wellington, who influenced me to follow the path of science and enjoy the works of the 

great thinkers of humanity, Fr. Florêncio Lecchi (Diocesan High School in Teresina), 

Prof. Clausius G. de Lima (University of Brasília), Prof. Ricardo von Borries (University 

of Brasília) and Prof. Carlos E. Parente Ribeiro (Federal University of Rio de Janeiro), 

some of them no longer present in this multiverse solution. 



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xix 

PROLOGUE 

“The Tamoio’s Song” 
(Encouraging words of a warrior of the Tamoio tribe to his newborn son)* 

Weep not, my son 
weep not, life is 
a keen struggle. 
To live is to strive 
life is a fight 
that brings down the weak 
that can only exalt 
the strong and the brave. 

— Gonçalves Dias 1 

1 Gonçalves Dias (1823–1864) was a Brazilian Romantic poet, playwright, ethnographer, lawyer, and 
linguist. Excerpt reprinted in L. Lúcia Sá, Rain Forest Literatures: Amazonian Texts and Latin American 
Culture, Minneapolis: University of Minnesota Press, 2004. 

*The Brazilian submarines are named after native-Brazilian colonial tribes as Tupi, Tamoio, Timbira,
Tapajó and Tikuna. 
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I. INTRODUCTION 

Towed sonar arrays are designed for passive and/or active target detection. These 

arrays are towed by surface ships, submarines, and UUVs (unmanned undersea vehicles). 

Two important types of towed arrays are a linear array of triplets and a twin-line planar 

array. 

A. MOTIVATION 

Towed sonar arrays represent a significant advantage over the sonars installed on 

the hull of surface ships and submarines, due to their ability to track targets located at 

longer ranges, reduction of self-noise, and operation at low frequencies (below 1 kHz). 

According to Urick [1], these frequencies (below 1kHz) usually contain meaningful 

components of vessel’s acoustic signatures, related primarily to machinery noise, like 

engines, motors, pumps, gears, propeller blades, electrical systems, and appliances. A 

deeper knowledge of this technology is invaluable for proper acquisition and operation of 

towed sonar arrays, as well as for developing or improving sonar systems already 

deployed by the Brazilian fleet. Furthermore, sonar arrays are the basic elements of 

underwater surveillance networks, planned to be installed along strategic areas of the 

Brazilian coastline. 

B. PROBLEM STATEMENT 

There are many reports of improvements on linear arrays of triplets and twin-line 

planar arrays available in the literature, as summarized in [2], [3], and [4]. Still, the 

literature lacks a systematic and detailed design approach for these sonars. 

The main goal of this research is to evaluate how well a linear array of triplets and 

a twin-line planar array can solve the port/starboard (PS) ambiguity problem, which 

occurs when the far-field (FF) beam pattern is symmetric, like in single-line arrays. The 

symmetry leads to the problem that a target located either at starboard or port side 

produces the same output signal in the sonar. Figure 1 is the top view of a linear array 

towed by a submarine while the beam pattern is being steered to search for targets. The 
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steer angle ψ ′  is measured from the positive X axis to the axis of the mainlobe in the XY 

plane, hatched in green. At steer angle ψ ′  = 45°, the signal measured in the sonar output 

indicates the presence of a target, that is, the target is located at bearing angle Sψ  = 45° 

(starboard side). However, in this example, the target is actually at Sψ  = 135° (port side), 

which corresponds to the steer angle of the mirror image of the mainlobe in the XY plane. 

Since both mainlobes have the same magnitude, the array has an identical response for 

targets located at symmetrical bearing angles, and consequently, the sonar generates the 

same output, causing the ambiguity. 

Figure 1 Port/starboard ambiguity problem. 

In addition to the PS rejection, the research addresses the following subsidiary 

questions: 

How can these arrays be designed to operate in either the passive or active mode? 

What is the relationship between frequency of operation, FF beam patterns, and 

size? 

How sensitive is the horizontal beam pattern of a twin-line planar array to noise? 

135Sψ = °

YZ

X

Starboard  Side

Port  Side

45Sψ = °

45ψ = °′
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How well does the FFT (fast Fourier transform) beamforming algorithm perform 

when processing signal plus noise data? 

C. LITERATURE REVIEW 

This section presents a general description of towed sonar arrays and their 

implementations. Initially, the features that may represent an advantage over 

conventional sonars are examined along with their drawbacks. The basic architecture of a 

towed sonar array and the characteristics of its components are introduced, as well as the 

two types of sonars studied—a linear array of triplets and a twin-line planar array. This 

section concludes with some examples of towed arrays. 

1. Background

Towed sonars date back to the “Electric Eel” of WWI, invented in 1917 by the US 

Navy Physicist H. Hayes. This device was an experimental twin-line array with 12 

hydrophones per neutral buoyant cable. Besides the port/starboard ambiguity removal 

provided by the buoyant arrays, the system was equipped with an additional pair of arrays 

mounted in the hull of the station towing the twin-line array, meant to allow for passive 

ranging using both arrays [2]. Since then, pushed by advances on ocean acoustics, 

electronics, and signal processing, towed sonars have improved drastically. Along with 

military applications, they have been used for purposes as diverse as oil and gas 

exploration, geological research, and location of objects on the seafloor. 

Towed sonar arrays are not constrained by the length of the vessel’s hull like 

flank sonar arrays in submarines. A longer length enables operation at lower frequencies 

and yields a higher directivity—which corresponds to an increase in bearing resolution. 

Nevertheless, the towing of a long cable—up to 2.4 km long at depths up to 360 m in the 

case of surface ships [4]—brings operational issues. The major problems are the 

limitation of the vessel’s speed, eventual damage by contact with the ocean bottom or 

fisher nets, setback of sensitive military operations due to time spent on stowage, and 

limitations on maneuvering. 
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Another advantage of these arrays is the uncoupling with the vessel’s self-noise 

(machinery noise and cavitation), resulting in a higher SNR and consequent detection and 

tracking of faint targets. However, this benefit is negated partially by the additional noise 

introduced by the towed sonar itself. The cabling self-noise due to hydrodynamic forces, 

in particular the vibrations induced in the towing cable, causes acceleration forces on the 

sensors [1, p. 372]. The cabling self-noise can be further heightened if the vessel does not 

keep a straight course or abruptly changes speed during measurements. Some design 

improvements and mechanical and signal processing compensation techniques have been 

introduced to overcome or minimize these drawbacks. 

Figure 2 shows the basic architecture of towed sonars. The design is based on the 

“TOWFLEX Principles” established in the early 1960s, as a result of research programs 

carried out by ONR (Office of Naval Research) and DTMB (David Taylor Model Basin) 

[4]. The surface ship towing the sonar moves to the right, in the positive Y direction. The 

coordinate system is centered in the middle of the array. This reference frame is utilized 

throughout this work. 

The towed sonar array is essentially composed of three segments: towing cable, 

flexible hose with the array of acoustic sensors (hydrophones), and stabilization tail. 

The following are the fundamental features of the TOWFLEX architecture, as 

illustrated in Figure 2. 

• The towing cable is made long enough to place the array segment below

the thermocline. The dotted line illustrates a sound-speed profile ( )c z ,

where z  is the depth, which takes on negative values below the ocean

surface. Hence, the array is put outside the near-field region of the ships’

radiated self-noise due to refraction of the travelling sound rays, and at a

distance at which this noise is greatly reduced by spreading loss. The

directionality provided by the array further reduces the remaining noise

coming from the ship [4].

• The flexible hose enclosing the array has a layer filled with oil. The

resulting buoyancy improves towing stability and reduces drag. The hose



5 

flexibility reduces also resonance characteristic of rigid structures [4], 

which produces radiated noise, according to [1, p. 333]. 

• The array is made even more flexible than its enclosing hose, in order to

isolate it from cable vibration and also to decouple the array elements

from each other. The array is also designed to weaken the acceleration

response induced by motion [4].

• The tail with a drogue avoids whip at the end of the array segment [4].

Signal processing techniques further compensate for some of the downsides of 

towed sonars and also address common problems faced by any sonar. The vertical motion 

of the vessel introduces errors in the acoustic pressure measured from targets. Moreover, 

cable twists during navigation cause nonalignment of the array sensors, resulting in errors 

in the computation of the DOA (direction of arrival). Sensors installed along the cabling 

measure its pitch and roll, such that they can be compensated for using adaptive 

techniques [4], [5], and [6]. A statistical average of the sensor’s outputs filter out both 

local noise—ambient sea noise and acoustic pressures in the oil layer from turbulence—

as well as element response to mechanical stresses and acceleration forces [4]. 

Figure 2 Towed sonar array (adapted from [4]). 
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The queuing of sensors one after another to build a linear array produces a 

port/starboard ambiguous FF beam pattern. This issue is solved by special arrangements 

of sensors in the array, along with proper processing of the received signals, as will be 

discussed in the next chapters. 

The arrangements considered in this work are shown in Figure 3. In Figure 3(a), 

clusters of single circular arrays composed of three equally-spaced hydrophones, called 

triplets, are queued to form a linear array. In the second arrangement, shown in Figure 

3(b), two linear arrays composed of equally-spaced sensors are combined to yield a twin-

line planar array. Regarding the Cartesian coordinate system indicated in these figures, 

the single triplets lie in the XZ plane and are aligned along the Y axis, and the twin-line 

planar array lies in the XY plane.  

 

(a) (b) 

Figure 3 (a) Linear array of triplets, and (b) a twin-line planar array. 

2. Implementations 

Some implementations of towed sonar arrays are presented below, in order to 

illustrate actual parameter values, such as array and segment lengths, number of 

elements, element spacing, and frequency range. The first array [6] exemplifies a hybrid 

device deploying sensors arranged both as a single-line array and as a linear array of 

triplets. The following two papers [5] and [7] relate to the same project, a linear array of 

triplets, used in conjunction with a towed sound source, and address a normalization 

device and the sonar calibration, respectively. The last paper [8] introduces a new 

beamforming algorithm for a linear array of triplets. 

FORA (Five Octave Research Array) [6] is a mixed towed sonar composed of a 

linear array of single elements and a linear array of triplets, designed and built by 

Y

Z

X

Y

Z

X
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Chesapeake Sciences Corporation in a joint project with Teledyne, ONR, MIT, and Penn 

State. The linear array of single elements, which does not provide port/starboard 

discrimination, has an acoustic aperture of 189 m, and a diameter of 78 mm.  The linear 

array of 78 triplets has an acoustic aperture of 15.6 m and a diameter of 88 mm. The 

sensors in the single triplet form an equilateral triangle with sides 38.5 mm in length. The 

linear array of single elements has 256 hydrophones and is divided into four modules for 

sub-array operation at 250, 500, 1000, and 2000 Hz cutoff frequencies. The cutoff 

frequency of the linear array of triplets is 3750 Hz. The DAC (digital-to-analog 

conversion) is performed at the hydrophone channel level (two or four hydrophones per 

channel) and transmitted through an ATM (Asynchronous Transfer Mode)/SONET 

(Synchronous Optical Network) network, which is also used for configuration. Additional 

sensors are distributed along the array for heading, pitch, roll, and depth measurements. 

The tow cable and the tail drogue are 950 and 305 m long, respectively. The sea trials to 

assess the several subsystems regarding this project began in 2003 [6]. 

An example of a linear array composed of triplets alone is presented by NURC 

(NATO Undersea Research Centre) [5]. This center has developed an LFAS (low 

frequency active sonar), consisting of a towed sound source and a towed receiver array. 

The receiver consists of a linear array of triplets and a normalizer. The latter is used to 

cancel the high background interference caused by reverberation and clutter present in 

littoral environments. The linear array has 126 triplets. It is divided into two nested sub-

arrays, is 35 m long and uses a sampling frequency of 12.8 kHz with LFM (linear 

frequency modulation) pulses in two frequency bands, 0.8–1.8 kHz and 2–3.62 kHz. 

Each band is covered by a sub-array with the radii of triplets adjusted for its band’s upper 

limit. NURC’s paper [5] describes the steps of signal processing and shows a beam-

pattern for a 45° steering direction, with successful PS rejection. Nevertheless, it does not 

detail the corresponding operating frequency or the complex weights applied. The 

remaining sections of this paper deal with the performance of the normalization process 

[5]. 

Another work of NURC [7] focuses on a linear array of triplets, and addresses 

two subjects, the calibration of the beamformed output and the compensation of errors 



 8 

due to the twist of the array. According to the authors, calibration is necessary for proper 

comparison between beam patterns obtained using real and synthetic data, respectively. 

For this purpose, they derive expressions of calibration factors for CW (continuous wave) 

and LFM input signals, and analyze the PS rejection for calibrated and non-calibrated 

data—both real and synthetic. Beamforming expressions are also derived, but the authors 

do not provide the values of the beamformer’s complex weights for PS rejection. 

Regarding the second subject, the authors derive a hydrophone positioning matrix as a 

function of the twist angle experienced by each sensor during the towing of the array. 

Using this matrix and the measurement of the angles through roll sensors along the array, 

they show how the twist effect can be compensated. 

Groen et al. [8] propose a novel adaptive triplet beamforming algorithm for 

LFAS. This algorithm allows the beamformer’s complex weights to be adjusted either for 

PS rejection or for SNR. The first option is appropriate for coastal areas with high 

directional reverberation, while the second option is more suitable for deep water, where 

the major concern is omnidirectional noise. 

D. METHODOLOGY AND THESIS ORGANIZATION 

This research is limited to mathematical modeling and computer simulations. The 

mathematical models for a single triplet, a linear array of triplets, and a twin-line planar 

array are implemented in Matlab. The behavior of their FF beam patterns as a function of 

frequency is studied. A comparative investigation on the performance of these arrays to 

solve the PS ambiguity problem is then carried out. Nevertheless, for further analyses, the 

research is focused only on the twin-line planar array. 

A signal generator is coded in Matlab, based on a theoretical model and designed 

specifically to simulate the signals reaching the sensors of a twin-line planar array. The 

sound-source radiates a rectangular-envelope CW pulse, and is positioned in the FF 

region of the array. The received signal is beamformed, and the measured bearing angle 

is compared to the known bearing angle set for the source. After assessed in a no noise 

situation, the performance of the array is tested in the presence of noise and their effects 

are evaluated. 
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Backed by these results and analyses, one is able to evaluate the efficacy of the 

simulated twin-line planar array, and then summarize the characteristics of the 

simulation, its advantages, constraints and operational conditions for best performance. 

Chapter II introduces the single triplet and examines its ability to resolve the PS 

ambiguity, and Chapter III extends this study for a set of triplets combined as a linear 

array of triplets. The remaining chapters are devoted to the twin-line planar array. 

Chapter IV describes the twin-line planar array, investigates its PS rejection capability, 

and presents a method for configuring sub-arrays. Chapter V describes the signal 

processing performed in the array and introduces a simulation tool for assessing its 

performance—a signal generator. Additionally, Chapter V details the implementation of 

beamforming using forward and inverse DFTs, and presents a method of computing 

beam patterns utilizing a two-dimensional spatial DFT. Chapter VI assesses the ability of 

the twin-line planar array to determine the location of a simulated target in the presence 

of noise. Chapter VII summarizes the thesis research and presents recommendations. 
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II. ANALYSIS OF A SINGLE TRIPLET

This chapter presents a study of the FF (far-field) beam pattern of a single triplet. 

The first section introduces the single triplet, with its definition, and the second section 

discusses the theoretical expression of the associated beam pattern. Some examples 

illustrate how the complex weights modify the shape of the beam pattern, and, more 

specifically, which complex weights yield a cardioid-shaped FF beam pattern, in order to 

eliminate the PS (port/starboard) ambiguity. An investigation of the dependence of the 

beam pattern on frequency allows one to determine the frequency constraints for keeping 

the cardioid shape. Based on this analysis, a method of beam pattern equalization is 

proposed. The derivation of an expression for the radial extent of a triplet as a function of 

frequency, as well as a discussion of the operational impact regarding this radius, 

concludes the study.  

A. SINGLE TRIPLET 

A single triplet is a circular planar array composed of three identical, equally-

spaced, omnidirectional point-elements. This circular array can be positioned in the XZ 

plane, so that the horizontal beam pattern lies in the XY plane, and the vertical beam 

pattern lies in the XZ plane, according to the right-handed Cartesian coordinate system of 

Figure 4(a). Adopting the positive Y axis as the direction of towing the triplet, as 

deployed in towed sonar arrays, the positive X axis will correspond to the starboard side, 

and the negative X axis to the port side. 

The rectangular coordinates ( nx , nz ) of the nth point-element in the array are 

defined in terms of the angle nφ  between the X axis and the polar radius a  at the position 

of the element, and are given by 

cosn nx a φ=   (2.1) 

sinn nz a φ=  (2.2) 

where n  is equal to 1, 2 or 3, and nφ , in radians, is given by 
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 ( 1) 2 / 3.n nφ π= −  (2.3) 

The rectangular coordinates for element 2 in the triplet are illustrated in Figure 4(b). 

 

 

(a) 

 

(b) 

Figure 4 (a) Right-handed Cartesian coordinate system, and (b) a single triplet 
in the XZ plane. 

B. FAR-FIELD BEAM PATTERNS 

The unnormalized, far-field beam pattern, ( , , )D f u w , of a single triplet with 

radial extent a  and lying in the XZ plane is given by the following expression [9, where 

direction cosine v  is replaced with direction cosine w  in Example 8.1-7] 

 
3

1

( )( , , ) ( ) ( )n
n

n njk u x wzD f u w f c f e
=

+= ∑=   (2.4) 

where 

 sin cosu θ ψ=   (2.5) 

and 

 cosw θ=   (2.6) 

are dimensionless direction cosines with respect to the X and Z axes, respectively, defined 

in terms of the spherical angles θ  and ψ , 

 2 /k π λ=   (2.7) 

ψ

θ
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is the wavenumber corresponding to wavelength λ  and frequency f , nx  and nz  are the 

rectangular coordinates of the nth triplet element, ( )f  is the element sensitivity

function, and ( )nc f  is the complex weight  used for the nth element. 

The complex weight ( )nc f  has amplitude ( )na f  and phase ( )n fϕ , which can be 

written in terms of the product of the wavenumber k , the radial extent of the single triplet 

a , and a constant nC , as shown below: 

( )( ) ( ) ( ) .nf
n n n

nj j C kac f a f e a f ej= =  (2.8) 

Both the amplitude ( )na f  and the phase ( )n fϕ  can be adjusted to conveniently modify 

the shape of the beam pattern of the single triplet, as demonstrated in the following 

examples. 

1. Far-Field Beam Patterns with no Phase Weights

The far-field beam patterns of Figure 5 were obtained by setting the operating 

frequency at 1000 Hz, and applying the following rectangular amplitude weights 

1( ) 2a f =  (2.9) 

2 3( ) ( ) 1a f a f= =  (2.10) 

and phase weights ( )n fϕ  equal to zero in Equation (2.8). 

Figure 5(a) shows the unnormalized, horizontal FF beam pattern in the XY plane, 

obtained from Equation (2.4) by setting θ  = 90°. Figure 5(b) shows the unnormalized, 

vertical FF beam pattern in the XZ plane, obtained from Equation (2.4) by setting ψ  = 0° 

(positive X axis) and ψ  = 180° (negative X axis). Port/Starboard (PS) ambiguity occurs 

in both beam patterns. The first one has maxima at 0° and ±180° [Figure 5(a)], and the 

second one at –90° and +90° [Figure5 (b)]. 
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(a) (b) 

Figure 5 (a) Unnormalized, horizontal FF beam pattern in the XY plane with 
no phase weights as a function of bearing angle ψ , and (b) 

unnormalized, vertical FF beam pattern in the XZ plane with no phase 
weights as a function of vertical angle θ . 

2. Far-Field Beam Patterns with Phase Weights 

The PS ambiguity observed in Figure 5 can be rejected by changing the complex 

weights to the following values [9]: 

 1

3
2 3 2 2

1( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
j j jj C k ac f a f e a f e a f e a f e

π π π
−

= − = − = − =   (2.11) 

 2 3( ) ( ) ( )c f c f a f= =   (2.12) 

where 1C  = 3/2 and ka  = π/3 in 1( )c f , 2C  = 3C  = 0 in 2 ( )c f  and 3( )c f , and ( )a f  = 1 

[see Equation (2.8)]. 

 These complex weights lead to the cardioid-shaped, unnormalized beam patterns 

shown in Figure 6(a) for the horizontal FF beam pattern in the XY plane, and Figure 6(b) 

for the vertical FF beam pattern in the XZ plane. In both beam patterns the ambiguous 

mainlobe at portside was suppressed. The beam patterns can be steered to the port side by 

using a positive π/2 phase weight in 1( )c f  [9], as shown in Figure 7(a) for the 

unnormalized, horizontal FF beam pattern in the XY plane, and Figure 7(b) for the 

unnormalized, vertical FF beam pattern in the XZ plane. 
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(a) (b) 

Figure 6 (a) Unnormalized, horizontal FF beam pattern in the XY plane 
steered to starboard side, and (b) unnormalized, vertical FF beam pattern 

in the XZ plane steered to starboard side. 

 

(a) (b) 

Figure 7 (a) Unnormalized, horizontal FF beam pattern in the XY plane 
steered to port side, and (b) unnormalized, vertical FF beam pattern in 

the XZ plane steered to port side. 

3. Beam Pattern vs. Frequency 

This section examines the behavior of the FF beam pattern of a single triplet as 
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is the value used for ka  in Equation (2.11) to obtain the cardioid beam pattern) one can 

derive an expression for ka  as a function of af , as follows: 

2
3 3 6

a
a

a

f ck a a a
c f
ππ π

= → = → =   (2.13) 

2 2 .
6 3a a

f f c fka a ka ka
c c f f
π π π

= → = → =  (2.14) 

One can note that when frequency f  is set equal to af  in Equation (2.14), then 

the product ka  is equal to π/3. Thus, for the study of the FF beam pattern as a function of 

frequency, one can start with a value for frequency af  in the required range of operation. 

Then, using Equation (2.13), the radial extent a  of the triplet can be computed. Next, one 

can take a frequency range around af  in order to examine the behavior of the shape of 

the beam pattern when ka  gets lower or higher than the optimum value π/3. The 

expression for the unnormalized, FF beam pattern used in this study was obtained by 

substituting Equation (2.14) into Equation (2.4) yielding 

3 3

1 1

( )( , , ) ( ) ( ) ( ) ( )n n
n n

n n
n n

x zjk u wjk a aau x wzD f u w f c f e f c f e
 
 
 

= =

++= =∑ ∑= = (2.15) 

3
3

1
( , , ) ( ) ( ) .a

f
f

n
n

n nx zj u wa aD f u w f c f e
π  

 
 

=

+
= ∑=  (2.16) 

In this study, frequency af  was set to 1000 Hz, which, as discussed in Chapter I, 

is the upper limit of a range of significant acoustical frequency components.  This 

frequency corresponds to a single triplet with a radius of 250 mm. The unnormalized, 

horizontal FF beam pattern in the XY plane was plotted for a frequency range between 10 

Hz and 1700 Hz, subdivided in intervals, as shown in Figure 8. For the sake of 

comparison, frequency af  is included in all of the intervals.  
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Figure 8 Unnormalized, horizontal FF beam patterns in the XY plane vs. 
bearing angle ψ and frequency. 

(a) (b) 

(c) (d) 

(e) (f) 

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

10 Hz
25 Hz
50 Hz
1000 Hz

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

75 Hz

100 Hz
150 Hz
1000 Hz

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

200 Hz
250 Hz
300 Hz
1000 Hz

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

400 Hz
450 Hz
500 Hz
1000 Hz

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

600 Hz
750 Hz
1000 Hz

0 °

15 °

30 °

45 °

60 °
75 °90 °

105 °

120 °

135 °

150 °

165 °

180 °

-165 °

-150 °

-135 °

-120 °

-105 °
-90 ° -75 °

-60 °

-45 °

-30 °

-15 °

Y

X

1000 Hz
1300 Hz
1500 Hz



18 

(g) 

Figure 8. (Continued.) 

For frequencies below af , the beam patterns kept the cardioid shape—even for 

values far lower than af —but the magnitude decreased in comparison to the beam 

pattern corresponding to f  = af . However, for frequencies well above af , the cardioid 

started to turn into a distorted dipole. This dipole is rotated π/2 rad relative to the case 

seen before, when no phase weights were applied (see Figure 5). The same behavior was 

observed for unnormalized, vertical FF beam patterns in the XZ plane. This distortion can 

be understood by examining the expressions for the beam pattern and the complex weight 

1( )c f  as follows. 

Substituting Equation (2.11) into the first term of the summation in Equation 

(2.16) yields 

1 11 1 1 1
2

1
33 32( ) 2 ( ) 2 ( ) .aa a

x zu w
a a

fx z x zf fu w u w ff a a f a a
jj jj

c f e a f e e a f e
πππ ππ       + −            

+ +−
= =  (2.17) 

For f  greater than af , the first term in the exponent becomes more dominant over the 

second term, which is the phase weight / 2π− . Therefore, 

1 1 1 1( )
3 2 32 ( ) 2 ( )a a

x z x zf fu w u wf a a f a a
j j

a f e a f e
π π π   

  
   

+ − +
 (2.18) 
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and the beam pattern starts losing its cardioid shape and approaches a dipole shape as 

observed in Figure 8(g). 

However, for f  less than af , the phase weight / 2π−  in the exponent of 

Equation (2.17) becomes more dominant over the first term, and the cardioid shape is 

kept. However, the lower the ratio / af f , the lower the magnitude of the first term in the 

exponent, which leads to progressive shrinking of the cardioid, as seen in Figure 8(f) and 

(g). Nevertheless, the decrease in magnitude of the beam pattern for frequencies below 

af  can be compensated for by the equalization of their beam patterns, using as a 

reference the maximum magnitude, MAXD , given by 

 | ( , 90 , 0 ) | .MAX aD D f= ° °   (2.19) 

The equalized version of an unnormalized, horizontal FF beam pattern in the XY 

plane ( , 90 , )D f ψ°  can be obtained by using the following expression: 

| ( , 90 , 0 ) |( , 90 , ) ( , 90 , ) ( , 90 , ).
max | ( , 90 , ) | max | ( , 90 , ) |

aMAX
eq

D fDD f D f D f
D f D f

ψ ψ ψ
ψ ψ

° °
° ° = °

° °
=  (2.20) 

Figure 9 shows how the equalization effectively compensates for the decrease in 

magnitude observed in the previous beam patterns. 

 

(a) (b) 
Figure 9 Equalized, horizontal FF beam patterns in the XY plane vs. bearing 

angle ψ  and frequency. 
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(c) (d) 

(e) (f) 

(g) 

Figure 9. (Continued.) 
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4. Radius of the Triplet 

As was previously discussed, the acoustic signature of a target determines the 

frequency af , which, in turn, determines the radius of the triplet. Recalling the discussion 

in Chapter I on the operational drawbacks of towed sonar arrays, the difficulty of 

deploying and stowing a long cable increases with its diameter. The cable weight and 

volume increase with the radius a  requires a greater power to tow and withdraw the 

sonar array. In addition, the towed array occupies a larger area in the already restricted 

loading space of a submarine. 

The radius of a triplet for a set of frequencies af  is listed in Table 1, using 

Equation (2.13) 

Table 1 Radius of the single triplet vs. frequency. 

Frequency ( af ) 
(Hz) 

Radius ( a  ) 
(m) 

10 25 
50 5 
250 1 
500 0.5 
1000 0.25 

 

From the results obtained for the equalized beam patterns in the previous section, 

one can conclude that by setting the radius a  of the triplet to 0.25 m, the maximum 

magnitudes of the beam patterns at ψ  = 0° for frequencies as low as 10 Hz is the same as 

that obtained for 1000 Hz, with no distortion of the cardioid shape. Therefore, the triplet 

can be designed such that, for a required frequency range, the maximum frequency is 

used to set the diameter of the triplet. In addition, equalization will nearly guarantee 

uniformity of the beam patterns over this frequency range. As an example, for the upper 

limit of 1 kHz, the required triplet diameter would be 0.5 m. 

The single triplet is the building block of the array to be presented in the next 

chapter. The comprehensive knowledge acquired so far is valuable to understand the role 
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of an individual triplet in the behavior of a linear array of triplets. The behavior of the 

array depends not only on the physical arrangement of the triplets, but also on their beam 

patterns as a function of frequency. 
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III. LINEAR ARRAY OF TRIPLETS 

This chapter examines the behavior of a set of single triplets combined as a linear 

array. The analysis consists of evaluating the effects of frequency variation and beam 

steering on the FF (far-field) beam pattern of the linear array. These results can be used 

as a reference to set the operation boundaries of the sonar array. 

A. LINEAR ARRAY 

Figure 10 shows a linear array of an odd number N = 5 of identical triplets lying 

along the Y axis. The triplets lie in the XZ plane and are equally spaced, separated from 

each other by a distance Yd . 

 

Figure 10 Linear array of triplets. 

In order to avoid grating lobes for all possible directions of beam steering, the 

inter-element spacing Yd  must be less than half the wavelength λ  corresponding to the 

frequency of operation. Given a range of frequencies specified for the linear array of 

triplets, the following limit for the ratio /Yd λ  must be taken into account in the design 

of the array [9, Subsec. 6.5.1]. 

 min

2Yd λ
<   (3.1) 

Yd

YZ

X
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max max max max2 2 2( / ) 2

Y Y
Y

d dc c c fd
f f c f f fλ λ λ

< → < = → <   (3.2) 

where maxf  is the upper limit of the specified frequency range. The ratio /Yd λ  is one of 

the parameters in the expression of the beam pattern of the array. 

B. FAR-FIELD BEAM PATTERNS 

According to the Product Theorem, the unnormalized, FF beam pattern of a linear 

array of N identical triplets is given by [9, Ch. 9, Example 9.1-2] 

 ( , , , ) ( , , ) ( , )YD f u v w E f u w S f v=   (3.3) 

where ( , , )E f u w  is the unnormalized, FF beam pattern of an individual triplet in the XZ 

plane, given by Equation (2.4) and here denoted as the beam pattern of a single element, 

and ( , )YS f v  is the dimensionless array factor in the Y direction given by [9, Ch. 9, 

Example 9.1-2] 

 
2

( , ) ( )
N

Y n
n N

Ydj v n
S f v w f e

π λ
′

′= −

= ∑  (3.4) 

 ( 1) / 2N N′ = −  (3.5) 

and ( )nw f  is the complex weight applied to element n. 

The array factor is the response of the array as a function of direction and 

frequency due to the spatial arrangement of its elements, and the complex weights 

applied. Complex weights allow modifying the contribution of each element in the array, 

both in amplitude and in phase, in order to change the overall response, and steer the 

beam pattern to a required direction, as if the array itself were rotated to this direction. 

The complex weight ( )nw f  is given by [9, Ch. 9, Example 9.1-2] 

 
2

( ) ( )n n

Ydj v n
w f b f e

π λ− ′
=   (3.6) 
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where ( )nb f  is a real, frequency-dependent, dimensionless amplitude weight, and 

sin sinv θ ψ′ ′ ′=   (3.7) 

where θ ′  and ψ ′  are the beam-steer angles. Substituting Equation (3.6) into Equation 

(3.4), using rectangular amplitude weights for ( )nb f , and adopting the upper limit for the 

ratio /Yd λ  given by Equation (3.2), the array factor can be rewritten as 

max
2 ( )2 ( ) 2( , ) .

N N

Y
n N n N

Y fd j v v nj v v n fS f v e e
ππ λ

′ ′

′ ′= − = −

− −′− −′
= =∑ ∑  (3.8) 

The analysis presented in this chapter is based on the equalized, FF horizontal 

beam patterns in the XY plane, which were calculated for an array of 11 triplets lying 

along the Y axis using Equation (2.4) for ( , , )E f u w , and Equations (3.3) and (3.8). For a 

horizontal beam pattern in the XY plane, one sets θ  = 90° and θ ′  = 90°. The sets of 

equalized beam patterns in the XY plane for the single triplet obtained in Chapter II were 

used for ( , , )E f u w  in the calculation of ( , , )D f u w , and the frequency maxf  in Equation 

(3.8) was set equal to af  = 1000 Hz. 

The first set of FF beam patterns, shown in Figure 11, was calculated with no 

beam steering, that is, with the phase weights set to zero. The same equalization method 

used for the single triplet, defined by Equation (2.20), was applied here. These results 

show that using just 11 triplets in a linear array leads to beam patterns with a sharp 

mainlobe for the frequency interval 600–1000 Hz ( af ), which translates into a higher 

directivity relative to the original single triplet beam pattern. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 11 Equalized, horizontal FF beam patterns in the XY plane of a linear 
array of 11 triplets vs. frequency and bearing angle ψ , with no beam 

steering. 
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(g) 

Figure 11. (Continued.) 

 

However, for frequencies below 100 Hz—the region where the single triplet was so well-

behaved—using triplets in a linear array has no effect on the FF beam patterns. This 

performance can be understood by examining the linear plot of the beam pattern. One can 

notice in the linear plots shown in Figure 12 the increase in the width of the mainlobe 

with a decrease in frequency, with the consequent reduction of array directivity (bearing 

resolution). This is the expected behavior for a fixed-size aperture, when the operating 

frequency is decreased [9, Sec. 2.2]. Despite the loss in bearing resolution—which could 

be compensated for by increasing the number of elements in the array—the operation at 

lower frequencies still avoids PS ambiguity. Regarding grating lobes, which are expected 

to arise at frequencies above af , one can observe in Figure 11(f) and (g), that with no 

beam steering, there is a margin of operation free of grating lobes, which extends up to 

1700 Hz, where large sidelobes start to appear. 
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(a) 

 
(b) 

Figure 12 Equalized, horizontal FF beam patterns in the XY plane of a linear 
array of 11 triplets vs. frequency and bearing angle ψ , with no beam 

steering. 

The series of equalized, FF horizontal beam patterns shown in Figure 13 to Figure 

16 is a study of the effect of beam steering on the original beam patterns previously 

shown in Figure 11. The first series refers to 15° beam steering and is shown in Figure 

13. A large sidelobe appears at 1500 Hz. For the very low frequencies between 10 and 50 

Hz, the beam patterns apparently did not undergo steering at all, but the maxima between 

-15° and 15° are virtually the same. 

 

(a) (b) 
Figure 13 Equalized, horizontal FF beam patterns in the XY plane of a linear 

array of 11 triplets vs. frequency and bearing angle ψ , steered to 15°. 
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(c) (d) 

(e) (f) 

Figure 13. (Continued.) 

 

The absence of beam steering for low frequencies is more noticeable in the 

second series, shown in Figure 14, where the mainlobe maxima matches the 30° steer 

angle only in the interval of 500–1000 Hz. Above 1000 Hz, the beam pattern shows 

significant sidelobes. 
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 14 Equalized, horizontal FF beam patterns in the XY plane of a linear 
array of 11 triplets vs. frequency and bearing angle ψ , steered to 30°. 
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The increase of beam steering to 45° further reduces the interval of operation to 

600–1000 Hz, as shown in Figure 15. Below 600 Hz, the beam patterns are distorted and 

not properly steered to 45°. Even the beam pattern corresponding to 1000 Hz ( )af  shows 

higher sidelobes. As the beam pattern is steered from broadside towards end-fire, the 

mainlobe becomes asymmetrical and the 3-dB beamwidth increases [9, Sec. 2.5]. The 

smallest value for the 3-dB beamwidth of the mainlobe is at broadside [9, Sec. 2.5]. 

 

(a) (b) 

(c) (d) 

Figure 15 Equalized, horizontal FF beam patterns in the XY plane of a linear 
array of 11 triplets vs. frequency and bearing angle ψ , steered to 45°. 
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(e) (f) 

Figure 15. (Continued.) 

 

The last series, shown in Figure 16, with a 60° beam steering, very close to end-

fire, indicate that only for af  the beam pattern matches the steer angle. 

 

(a) (b) 
Figure 16 Equalized, horizontal FF beam patterns in the XY plane of a linear 

array of 11 triplets vs. frequency and bearing angle ψ , steered to 60°. 
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(c) (d) 

(e) (f) 
 

Figure 16. (Continued.) 

 

The results obtained in this analysis showed that a linear array of eleven single 

triplets yields a FF beam pattern free of PS ambiguity for the frequency range 10 Hz–

1500 Hz [Figure 11(f)], with no beam steering. As the beam pattern is steered towards 

end-fire, the operational frequency range reduces, pushing the upper limit down to 600 

Hz for a beam-steer angle of 45°. For a beam-steer angle of 60°, the beam pattern is 

distorted for any frequency other than 1000 Hz. 
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IV. TWIN-LINE PLANAR ARRAY 

This chapter introduces the twin-line planar array, and shows how it solves the PS 

(port/starboard) ambiguity problem. A study of horizontal FF (far-field) beam patterns as 

a function of frequency and beam steering demonstrates the operational constraints of a 

twin-line planar array with fixed spacing between elements. Section C describes how this 

limitation is usually resolved using sub-arrays.  

A. DEFINITION 

The twin-line planar array is composed of two parallel linear arrays with N  

identical, complex-weighted, omnidirectional point elements per line. Figure 17 shows a 

twin-line planar array with N  = 6 lying in the XY plane. 

The spacings in the X and Y directions, which equally separate all elements, are 

denoted by Xd  and Yd , respectively. Following the spatial orientation introduced in 

Chapter I, the towing direction, starboard side, and port side are indicated by the positive 

Y axis, positive X axis, and negative X axis, respectively. The element coordinates 

1( , )nx y  in the positive X and Y directions, with respect to the origin, are given by [9, Ch. 

8, Example 8.2-1] 

 1 0.5 Xx d=   (4.1) 

 ( 0.5) , 1, 2, ..., / 2n Yy n d n N= − =   (4.2) 

and the element coordinates 1( , )nx y− −  in the negative X and Y directions, with respect to 

the origin, are given by 

 1 1( , ) ( , ).n nx y x y− − = − −   (4.3) 
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Figure 17 Twin-line planar array lying in the XY plane (adapted from [9, Ch. 8, 
Example 8.2-1], Figure 8.2-2). 

Using the Product Theorem, and assuming separable complex weights, the 

unnormalized, FF beam pattern of the twin-line planar array lying in the XY plane is 

given by [9, Ch. 8, Example 8.2-1] 

 ( , , ) ( ) ( , ) ( , )X Y X X Y YD f f f f S f f S f f= =   (4.4) 

where ( )f  is the complex, element sensitivity function, and ( , )X XS f f  and ( , )Y YS f f  

are the array factors in the X and Y directions, respectively, given by [9, Ch. 8, Example 

8.2-1] 

 1( , ) 2 ( ) cos[ ( ) ]X X X X XS f f a f f f dπ ′= −   (4.5) 

 
/2

1
( , ) 2 ( ) cos[2 ( ) ( 0.5) ]

N

Y Y n Y Y Y
n

S f f b f f f n dπ
=

′= − −∑   (4.6) 

where 

 1 1( ) ( )a f a f−=   (4.7) 

are the amplitude weights in the positive and negative X directions, respectively [9, Ch. 8, 

Example 8.2-1], 

 ( ) ( ) , 1, 2, ...,n nb f b f n N−= =   (4.8) 

are the amplitude weights in the positive and negative Y directions, respectively [9, Ch. 8, 

Example 8.2-1], and Xf  and Yf  are the spatial frequencies in the X and Y directions, 

respectively, defined by 

51
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 /Xf u λ=   (4.9) 

 /Yf v λ=   (4.10) 

and 

 /Xf u λ′ ′=   (4.11) 

 / .Yf v λ′ ′=   (4.12) 

The beam pattern of the array is steered to u  = u′  and v  = v′  in direction-cosine space, 

where the dimensionless direction cosines with respect to the X direction are given by 

 sin cosu θ ψ=   (4.13) 

 sin cosu θ ψ′ ′ ′=   (4.14) 

and the dimensionless direction cosines with respect to the Y direction are given by 

 sin sinv θ ψ=   (4.15) 

 sin sin .v θ ψ′ ′ ′=   (4.16) 

Substituting Equations (4.5), (4.6), and (4.9) through (4.12) into Equation (4.4), 

the unnormalized, FF beam pattern of the twin-line planar array lying in the XY plane 

becomes [9, Ch. 8, Example 8.2-1] 

/2

1
1

( , , ) 4 ( ) ( ) cos ( ) ( ) cos 2 ( )( 0.5) .
N

X Y
n

n

d dD f u v a f f u u b f v v nπ π
λ λ=

   ′ ′= − − −      
∑=   (4.17) 

B. HORIZONTAL FF BEAM PATTERNS 

The study of the horizontal FF beam patterns in the XY plane employed a twin-

line planar array with six elements per line, as shown in Figure 17. The frequency range 

is the same as that used for the array of triplets—between 10 and 1000 Hz. The array was 

configured with interelement spacings set to the following values, which yield a beam 

pattern with no PS ambiguity [9, Ch. 8, Example 8.2-1] 

 min / 2Yd = λ   (4.18) 

 min / 4Xd λ=   (4.19) 
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where minλ  is the wavelength corresponding to the frequency upper limit maxf  = 1000 Hz. 

Since the beam pattern will not be steered to end-fire, the value chosen for Yd  obeys the 

condition given by Equation (3.1), required to avoid grating lobes. For a horizontal beam 

pattern in the XY plane, both θ  and θ ′  were set to 90° in Equations (4.13) through (4.16). 

Figure 18 shows the normalized, horizontal FF beam pattern for the operating 

frequency set to the optimum value maxf , and with no beam steering (ψ ′  set to zero), 

which is free of PS ambiguity. Nevertheless, the PS rejection diminishes as the frequency 

decreases, as observed in Figure 19. For the lowest frequency in this series, 120 Hz (d), 

the array becomes approximately omnidirectional [see Figure 19(d)]. 

 

 

Figure 18 Normalized, horizontal FF beam pattern in the XY plane of the twin-
line planar array with six elements per line vs. bearing angle ψ , for f  

= 1000 Hz, with no beam steering. 
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(a)  (b) 

 
(c)  (d) 

Figure 19 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array with six elements per line vs. bearing angle ψ , with no 
beam steering, for f  equal to (a) 800 Hz, (b) 700 Hz, (c) 500 Hz, and 

(d) 120 Hz. 

This behavior can be understood by examining the expression for the beam 

pattern, when the element spacings defined by Equations (4.18) and (4.19) are substituted 

into Equation (4.17), and the angles θ  = θ ′  = 90° and ψ ′  = 0° are substituted into 

Equations (4.13) through (4.16), yielding 

/2
min min

1
1

1 1( ,90 , ) 4 ( ) ( ) cos[ (cos 1) ] ( ) cos[ (sin )( ) ] .
4 2

N

n
n

D f a f f b f nλ λψ π ψ π ψ
λ λ=

° = − −∑=  (4.20) 

For small values of the angleψ , the arguments of the cosine functions in Equation (4.20) 

will be close to zero, and the beam pattern will have the highest values. In addition, both 

arguments are weighted by the ratio min /λ λ , whose maximum value is 1—corresponding 
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to f  = maxf  and to the narrowest 3-dB beamwidth of the mainlobe—and then decreases 

as the frequency decreases. Given a range of angles ψ  around zero corresponding to the 

mainlobe at broadside, a decrease in frequency will increase the value ( ,90 , )D f ψ°  

computed for each angle ψ  in this range, since min /λ λ  is decreasing and, hence, 

increasing the values of both cosine functions. This translates into widening the 

mainlobe, as observed in Figure 19(c) and (d). Therefore, if one could vary the 

interelement spacing in the array, such that, for every frequency—or at least for 

intermediate values within the operational frequency range—the ratio min /λ λ  would be 

equal to 1, then the directivity of the array would be optimized. This concept is the basis 

of the sub-array technique discussed in the next section. 

C. SUB-ARRAY 

A sub-array is a subset of a group of sensors, which constitutes a full twin-line 

planar array, independent from the remaining sensors. Each sub-array is dimensioned for 

a given frequency, referred to as the sub-array frequency saf , and is activated to detect 

targets with frequency components up to saf . Figure 20(a) shows an arrangement 

composed of three sub-arrays [Figure 20(b), (c) and (d)], with 26, 8 and 6 elements per 

line and interelement spacings in the Y direction 
1Yd , 

2Yd  and 
3Yd , respectively, which 

are related by the integer ratio iK : 

 
1

/ , 1, 2, 3
ii Y YK d d i= =  (4.21) 

whose values are 1K  = 1, 2K  = 3, and 3K  = 5. Denoting maxf  as the frequency 

corresponding to sub-array 1 and using Equation (4.18), the sub-array frequencies sa i
f  

are given by 

 
11

max max

min max

/ 2 /
.

/ 2 /
i sa sa saY

i sa
Y sa sa i

i i i
i

i

c fd f fK f
d c f f K

λ λ

λ λ
= = = = = → =   (4.22) 
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Consequently, if sub-array 1 has its spacing 
1Yd  dimensioned for sub-array 

frequency 
1saf  = 1000 Hz, then sub-arrays 2 and 3 will be suitable for sub-array 

frequencies 
2saf  = 333.3 Hz and 

3saf  = 200 Hz, respectively. 

In order for the twin-line planar array to locate targets with frequency components 

up to a given limit MAXF , one should activate the sub-array with 
isaf  such that 

 MAX sai
F f≤   (4.23) 

and calculate the beam pattern with frequencies up to MAXF  to avoid grating lobes. 

Therefore, for MAXF  equal to 180 Hz, for example, sub-array 3 (
3saf  = 200 Hz) should be 

activated, and for 900 Hz, sub-array 1 (
1saf  = 1000 Hz) should be activated. 

Nevertheless, as seen in the previous section, the beam pattern undergoes distortion as the 

operational frequency gets farther from the frequency used to set the interelement spacing 

Yi
d . The worst case occurs when MAXF  is just above a sub-array frequency. If MAXF  is 

equal to 220 Hz, for example, then the closest sub-array frequency greater than MAXF  is 

2saf = 333 Hz (sub-array 2). Thus, the use of this array will yield beam patterns with high 

sidelobes and low PS rejection within the frequency interval 0 – MAXF . In this case, a 

better choice would be to activate sub-array 3, ignoring components above 200 Hz. 

Additional sub-arrays increase the number of sub-array frequencies, and thus shorten the 

frequency intervals between them, but represent an increase in the number of elements, 

raising complexity and costs. 

For an inter-element spacing in the Y direction corresponding to maxf  = 1000 Hz, 

calculated using Equation (4.18) 

 
1 min max/ 2 / 2Yd c fλ= =   (4.24) 

which yields 
1Yd  = 0.75 m—considering a constant speed of sound equal to 1500 

m/sec—this array will have length 1L  given by the following expression: 
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Figure 20 Twin-line planar array using three sub-arrays. 
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11 1( 1) YL N d= −   (4.25) 

yielding 1L  = 18.75 m. Table 2 summarizes the parameters for the three sub-arrays 

shown in Figure 20. The inter-element spacing Xd  in the X direction for the twin-line 

planar array is equal to 0.375 m, calculated using Equation (4.19). 

Table 2 Parameters for the three sub-arrays in Figure 21. 

Sub-Array ( i ) iK  ( )Yi
d m  ( )Xd m  (Hz)

isaf  iN  

1 1 0.75 
0.375 

1000.0 26 
2 3 2.25 333.3 8 
3 5 3.75 200.0 6 

 

Concerning the calculation of the beam pattern, since the interelement spacing Yid  

in the Y direction is different by a factor iK  for each sub-array, 

 / 2, 1, 2, 3Y sa ii
d iλ= =   (4.26) 

but the interelement spacing Xd  in the X direction is kept constant, then the condition 

stated in Equation (4.19) for a beam pattern free of PS ambiguity is violated for the sub-

arrays other than the first one, that is: 

 min / 4, 2, 3Xi
d iλ≠ =  (4.27) 

where 

 
1min .saλ λ=  (4.28) 

This violation can be compensated for by applying, for each sub-array, the 

corresponding ratio iK  as a weighting factor in the first cosine function of ( , , )D f u v , 

given by Equation (4.17), yielding the following expression for the beam pattern 

( , , )iD f u v  of the ith sub-array: 
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/2

1
1

( , , ) 4 ( ) ( ) cos ( ) ( ) cos 2 ( )( 0.5) .
N

YX
i n

nsa sa

i

i i

i
ddD f u v a f f u u K b f v v nπ π

λ λ=

   
′ ′   = − − −

      
∑=  (4.29) 

Since iK  is equal to 
1

/sa sai
λ λ  [see Equation (4.22)], one can notice that, even using the 

same interelement spacing Xd  in all sub-arrays, the expression for ( , , )iD f u v  is 

equivalent to 

1 1

/2

1
1

( , , ) 4 ( ) ( ) cos ( ) ( ) cos 2 ( )( 0.5)
N

YX
n

nsa sa

i
i

ddD f u v a f f u u b f v v nπ π
λ λ=

   
′ ′   = − − −

      
∑=  (4.30) 

which matches both conditions stated in Equations (4.18) and (4.19) for PS ambiguity 

rejection: 

 
/ 2Y sai i

d λ=
  (4.31) 

 
1

/ 4.X sad λ=   (4.32) 

D. HORIZONTAL FF BEAM PATTERNS USING SUB-ARRAYS 

The following series of horizontal FF beam patterns, calculated using Equation 

(4.29), illustrates the application of the twin-line planar array with three sub-arrays 

dimensioned in the last section at frequencies 
isaf  equal to 1000, 333.3 and 200 Hz (see 

Table 2). The first series was calculated with no beam steering. Afterwards, a specific 

sub-array is used, in order to investigate the effect of steering. 

1. No Beam Steering 

The series of beam patterns shown in Figure 21 confirms the effectiveness of the 

sub-array technique, evaluated at operational frequencies 140 Hz (a), 180 Hz (b), 220 Hz 

(c), and 900 Hz (d). The first two frequencies are processed by sub-array 3 (
3saf  = 200 

Hz), the third one by sub-array 2 (
2saf  = 333.3 Hz), and the last one by sub-array 1 (

1saf  

= 1000 Hz). For operational frequencies close to and less than a sub-array frequency—for 

example, 180 Hz ≤ 
3saf = 200 Hz and 900 Hz ≤ 

1saf = 1000 Hz—the beam patterns show 
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very small sidelobes, while at intermediate frequencies far from and less than sub-array 

frequencies—for example, 140 Hz ≤ 
3saf = 200 Hz and 220 Hz ≤ 

2saf = 333.3 Hz—very

pronounced sidelobes were observed, as expected. 

(a) (b) 

(c) (d) 

Figure 21 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array vs. bearing angle ψ , using sub-arrays, with no beam 

steering, for operational frequencies (a) 140 Hz, (b) 180 Hz, (c) 220 Hz, 
and (d) 900 Hz. 

2. With Beam Steering

The beam pattern becomes distorted when steered towards end-fire, as shown for 

the sub-array frequency of 200 Hz in Figure 22. Up to a beam-steer angle of 30° [Figure 

22(c)] the beam pattern is virtually free of significant sidelobes. By further steering to 50° 

[Figure 22(e)], the increase in the 3-dB beamwidth of the mainlobe is noticeable and the 
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beam pattern is badly distorted. The steering limit determined above is lowered when the 

twin-line planar array operates at non-sub-array frequencies, since their beam patterns 

with no steering already have noticeable sidelobes [see Figure 21(a) and (c)]. 

The combined effects of non-sub-array frequencies and steering is shown in 

Figure 23 for the worst case considered previously—the operational frequency set to 220 

Hz. Above a beam-steer angle of 15°, as illustrated in Figure 23(c) and (d), the sidelobe 

approaches the mainlobe in magnitude, such that the array loses its PS rejection ability 

for that frequency. Therefore, additional sub-arrays are needed to allow for a greater 

beam-steer angle while preserving PS rejection. 

 

 
(a) (b) 

 
(c) 

 
(d) 

Figure 22 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array vs. bearing angle ψ , using a sub-array frequency of 

200 Hz, and beam steered to (a) 0°, (b) 15°, (c) 30°, (d) 40° and (e) 50°. 
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(e) 

Figure 22. (Continued.) 

 

(a) (b) 

 
(c) 

 
(d) 

Figure 23 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array vs. bearing angle ψ , using a sub-array frequency of 

220 Hz, and beam steered to (a) 0°, (b) 15°, (c) 30°, and (d) 40°. 
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This section concludes the modeling and testing of the twin-line planar array 

except for the transduction and the beamforming, which require an input acoustical 

signal, and thus will be presented in the Chapter V along with the sound-source 

simulation. The twin-line planar array segmentation into sub-arrays, discussed in this 

Chapter, will not be utilized in Chapter VI. The original twin-line planar array with N  

equal to six elements per line studied in Section A will be used instead, and the focus will 

be on signal processing. 
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V. SIGNAL GENERATOR AND FFT BEAMFORMING 

This chapter describes the signal generator, which is a simulation of a sound-

source and the transmission medium, used to evaluate the performance of the twin-line 

planar array. The generator depends upon the properties of the medium being simulated, 

and the physical arrangement of elements along the array. Therefore, this generator is 

specific to a twin-line planar array, and both of them create an interdependent system. 

Nevertheless, the methodology is generic and can be applied as well for the array of 

triplets or other types of sonar arrays, by simply changing the code associated with the 

sonar array.  

The system composed by the signal generator and the twin-line planar array has 

three modules, as shown in Figure 24: the sound-source, the medium and the array, which 

are discussed in Sections A through C, respectively. They are bound by a common 

parameter, the range between each array element and the sound-source. The two main 

system outputs are the beamformed signal—generated using the FFT beamforming 

method (presented in Section D)—and the beam pattern, calculated using a two-

dimensional spatial DFT (described in Section E). 

A. SOUND-SOURCE 

The basic purpose of the signal generator is to verify if the twin-line beamformer 

under development and testing is working properly, that is, if it estimates the correct 

bearing angle of a target whose coordinates are known. 

Therefore, for testing purposes, an omnidirectional point-source with adjustable 

spherical coordinates and radiating an acoustic signal consisting of a deterministic, noise-

free, single frequency, CW (continuous wave) pulse was used to model the target. Once 

the beamformer is validated, one might extend the generator to multiple sources located 

at different coordinates, and using deterministic or random, CW or modulated signals, 

such as LFM (linear frequency-modulated) or HFM (hyperbolic frequency-modulated) 

signals. 
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Figure 24 System composed of the signal generator and the twin-line planar array (based on [9, Sec. 7.2–7.4 and 
Sec. 8.5]). 
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The target’s source strength ( )os t  (volume flow rate, in m3/sec) is given by a 

rectangular-envelope, CW with pulse length T  (sec), amplitude A  (in m3/sec), carrier 

frequency of  (in Hz), and phase ϕ  (in rad): 

 0.5( ) cos (2 ) recto o
t Ts t A f t

T
π ϕ − = +  

 
 (5.1) 

where 

 1, 00.5rect
0, otherwise.

t Tt T
T

≤ ≤−  =  
  

 (5.2) 

The amplitude A  can be calculated from the pressure amplitude P  (in Pa) at a distance 

r  from the center of the source and as a function of frequency f  (in Hz) using the 

following expression [10] 

 22
o o

r rA P A P
c f

λ
r r

= → =   (5.3) 

where oρ  is the constant ambient density of the fluid in kg/m3, and c  is the speed of 

sound in the fluid in m/sec. The sound pressure level SPL  in dB relative to the reference 

pressure amplitude refP , that is, SPL  re refP , is given by [10, p. 130] 

 20 log( / ),refSPL P P=   (5.4) 

where refP  is equal to 1μPa. 

Therefore, a given range of radiated noise level (RNL) in dB re 1μPa as a function of 

frequency f , taken from a target’s acoustical signature, can be used to calculate the 

amplitude source strength at r = 1 m generated by a sound-source simulating that target. 

Solving Equation (5.4) for pressure P , replacing SPL  with RNL, and substituting P  in 

Equation (5.3) yields 

 ( )/20
1

2 x 10 .RNL f
refr m

o

A P
f r=

=   (5.5) 
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 The complex frequency spectrum of the target’s source strength ( )oS f  (in 

(m3/sec)/Hz) is given by  

 ( ) { ( )}.o t oS f F s t=   (5.6) 

The omnidirectional, point target, located at spherical coordinates ( , , )S S Sr θ ψ , is 

shown in Figure 25 along with the twin-line planar array lying in the XY plane. The range 

,m nR  in meters between the target and the center of the array element with rectangular 

coordinates ( , )m nx y  is given by [9, Sec. 8.5] 

 2 2 2
, 2 ( )m n S S S m S n m nR r r u x v y x y= − + + +   (5.7) 

where 

 2 2 2
S S S Sr x y z= + +   (5.8) 

 sin cosS S Su θ ψ=   (5.9) 

 sin sin .S S Sv θ ψ=   (5.10) 

 

Figure 25 Sound-source and the twin-line planar array lying in the XY plane. 

The signal generator assumes the coordinates of both the twin-line planar array 

and target to be constant, that is, there is no motion, and hence, no Doppler shift 

(frequency shift due to relative motion). 
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B. MEDIUM 

For the purpose of testing, a simple model was used for the fluid medium 

(seawater) with the following characteristics: 

• Unbounded: the acoustic field radiated by the target has no interaction 

with the ocean surface or bottom. 

• Viscous: the sound waves are subject to fluid resistance, which causes 

absorption of sound energy, subsequently dissipated as heat. This 

absorption is frequency-dependent and is quantified by the attenuation 

coefficient ( )fα′ , which varies also with temperature and salinity, but can 

be approximated by [11] 

 4 2
2 2

0.08 30( ) 4 10
0.9 3000

f F
F F

α − ′ = + + × + + 
  (5.11) 

 where F  is the frequency in kHz, and ( )fα′  is in dB/km. 

The attenuation coefficient ( )fα′  in dB/km can be converted to Np/m by 

using the following expression [9, Sec. 7.2], which is plotted for the 

frequency interval  to 0 / 2sf  in Figure 26  

 3

( )( ) .
8.686 x10

ff αα
′

=   (5.12) 

 

 
Figure 26 Attenuation coefficient ( )fα in Np/m  vs. frequency in kHz. 
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• Homogeneous: there is no sound speed variation with depth, density and 

temperature, which would cause the sound waves to refract along their 

trajectory towards the twin-line planar array. The sound waves propagate 

spherically through the medium at a constant speed c  (in m/sec).  

Following the sequence of operations performed by the medium as shown in 

Figure 24, the first step is absorption. Since the absorption coefficient ( )fα  is 

frequency-dependent, this operation must be carried out in the frequency-domain, i.e., the 

coefficient must be applied to the complex frequency spectrum of the target’s source 

strength ( )So f . The total absorption is the product of ( )fα , in Np/m, and the range 

, ,m nR  such that [9, Sec. 7.2–7.4 and Sec. 8.5] 

 ,( )( ) .( , , y ) So o
m n

m n
f RS f ef x α−′ =  (5.13) 

The next two steps, attenuation by spherical spreading loss, and the time delay 

experienced by the signal, are combined in the following expression for the complex 

frequency spectrum, in (m2/sec)/Hz, of , ( , , )M Tgrt m ny t x y —the velocity potential of the 

spherical wave propagating in the medium [9, Sec. 7.2–7.4 and Sec. 8.5] 

 ,
,

,2( , , )
1( , , )

4 m nM Trgt m n o
m n

m nj ff x yY f x y S e
R

π t

π
−′= −  (5.14) 

where ,m nτ  (in sec) is the one-way time delay perceived by the array element separated by 

the distance ,m nR  from the sound source and is given by 

 , , / .m n m nR cτ =   (5.15) 

The velocity potential, , ( , , )M Trgt m ny t x y , in m2/sec, can be written as follows, and 

constitutes the first output of the signal generator shown in Figure 24 [9, Sec. 7.2–7.4 and 

Sec. 8.5] 

 , ,
,

1( , , ) ( ).
4M Trgt m n o m n

m n

y t x y s t
R

t
π

′= − −   (5.16) 
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These three steps are independent, and thus do not need to follow the sequence 

presented above. In the actual implementation, the target’s source strength ( )os t  was 

generated using a time-shifted version of Equation (5.1) to include the time-delay of each 

array element, yielding ,( )o m ns t t− . To this signal, absorption and spherical spreading 

loss were applied. 

The second output of the medium module is the velocity potential of the acoustic 

signal due to ambient noise , ( , , )M m nany t x y , in m2/sec. In deep water, the ambient noise 

consists predominantly of sound produced by distant ship traffic and distant storms, both 

in the frequency range 50–500 Hz [1, p. 207]. 

This model, used along with the single sound-source, provides a simple and controllable 

test set for the twin-line planar array, such that most of the variables during the 

development are related to the array. 

C. TWIN-LINE PLANAR ARRAY 

The twin-line planar array module performs basically two functions: transduction 

and beamforming/beam steering, as shown in Figure 24. First, the two signals coming 

from the medium, , ( , , )M Trgt m ny t x y  and , ( , , )M m nany t x y , are converted to the 

frequency-domain }{( )tF • , and then multiplied by the complex receiver sensitivity 

function ( )f , in V/(m2/sec), which quantifies the conversion of acoustical energy into 

electrical energy by the transducer element. The function ( )f  is determined from the 

open circuit receiving response of the transducer, which is a curve of the receiver 

sensitivity level, ( )RSL f  in dB re refRS , vs. frequency (in Hz), where the reference 

receiver sensitivity refRS  is usually equal to 1V/μPa for underwater transducers. The 

magnitude of ( )f  is given by [9, Appendix 6B] 

 ( ) 2 ( )of f RS fπ ρ==   (5.17) 

where ( )RS f  is the receiver sensitivity, given by [9, Appendix 6B] 
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 ( )/20( ) 10 RSL f
refRS f RS=   (5.18) 

and oρ  is the constant ambient density of the fluid, in kg/m3. 

The complex frequency spectrum of the output electrical signal from the element 

( , )m n  in the array due to the target before complex weighting, in V/Hz, is given by [9, 

Sec. 7.2–7.4 and Sec. 8.5] 

 ,( , , ) ( , , ) ( ),Trgt m n M Trgt m nY f x y Y f x y f′ = =   (5.19) 

and the complex frequency spectrum due to ambient noise, in V/Hz, is given by [9, Sec. 

7.2–7.4 and Sec. 8.5] 

 ,( , , ) ( , , ) ( ).m n M m na an nY f x y Y f x y f′ = =   (5.20) 

Both spectra are converted to the time-domain, in order to introduce the receiver additive 

noise ( , , )m nrn t x y′ . This self-noise consists basically of thermal white noise (AWGN) 

originated in the receiver’s electronic devices, and transduced turbulent pressures (flow 

noise), created in the turbulent layer around the hydrophones, which introduces a 

fluctuating noise voltage [1, p. 360]. 

The resultant noise ( , , )m nz t x y  at each array element is given by the sum of the 

ambient noise and the receiver noise, given in V by 

 1( , , ) { ( , , )} ( , , )m n f m n m nan rz t x y F Y f x y n t x y− ′ ′= +   (5.21) 

 ( , , ) ( , , ) ( , , ).m n m n m nan rz t x y y t x y n t x y′ ′= +   (5.22) 

In the simulator, ( , , )m nz t x y  is created by a Gaussian random number generator, 

assuming that ( , , )m nany t x y′  and ( , , )m nrn t x y′  are statistically independent, zero-mean 

random processes, and is given by 

 ( , , ) ( , , )m n ozz t x y z t m nσ=   (5.23) 

where ( , , )oz t m n  is the zero-mean, variance one, normal-distributed random sequence 

generated for element ( , )m n , and zσ  is the standard deviation of ( , , )m nz t x y  required to 
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yield a given SNR (in dB) relative to ( , , )Trgt m ny t x y′ . The standard deviation zσ  is given 

by (see Appendix) 

 ,
/20x10avg Trgt

SNR
z yPσ −

′=   (5.24) 

where the time-average power ,avg TrgtyP ′  of ( , , )Trgt m ny t x y′ , in W-Ω, is given by 

 
2

, 0

1 ( , , ) .
T

Trgt m navg TrgtyP y t x y dt
T′ ′= ∫   (5.25) 

A different seed is used to generate a random sequence ( , , )oz t m n  for each array 

element, to ensure that the output noise at each element is uncorrelated. 

The received electrical signal (in V) at the output of element ( , )m n  in the array 

before complex weighting, ( , , )m nr t x y′ , is then given by 

 ( , , )( , , ) ( , , ).m nm n m nTrgt t x yr t x y y z t x y′ ′= +   (5.26) 

The next step is the beamforming, or phase alignment of the signals coming from 

all elements to form a single beam. This process uses as inputs the steer angles , )(θ ψ′ ′ , 

and the element coordinates ( , )m nx y  to calculate the time-delay ,m nτ ′ , which, in turn, 

holds the following relationship with the phase weight ,m nθ  [9, Sec. 8.2] 

 ,
,

( )

2
.m n

m n
f

fπ

θ
τ = −′   (5.27) 

Ideally, for the purpose of exactly compensating for the time-delay imposed on the signal 

during its trajectory towards different elements in the array, one should apply a time 

delay ,m nτ ′  equal to ,m nτ  in order to cophase all the signals. In practice, however, the 

range .m nR  is unknown at reception, and ,m nτ ′  cannot be calculated using Equation 

(5.15). 

If the range to the target Sr  satisfies the Fraunhofer (far-field) range criterion [9, 

Sec. 3.1 and 3.2] 
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 2 2.414S A Ar R Rπ
λ

> >   (5.28) 

where the maximum radial extent of the aperture AR  (the twin-line planar array) is given 

by 

 
2 2

2 2
X Y

A
L LR    = +   

   
  (5.29) 

where 

 X XL d=   (5.30) 

is the length of the array in the X direction and 

 ( 1)Y YL N d= −   (5.31) 

is the length of the array in the Y direction, then [9, Sec. 8.2] 

 , m nm n
u vx y
c c

τ ′ ′
= +′   (5.32) 

where 

 sin( ) cos( )u θ ψ′ ′ ′=   (5.33) 

 

 sin( )sin( ).v θ ψ′ ′ ′=   (5.34) 

The complex weights required to cophase the output electrical signals from of all array 

elements are given by [9, Sec. 8.2] 

 ,
, ,

2( ) m n
m n m n

j fc f a e π τ− ′=  (5.35) 

where ,m na  are the amplitude weights. 

The complex frequency spectrum (in V/Hz) of the received electrical signal at the 

output of element ( , )m n  in the array after complex weighting is calculated by converting 

( , , )m nr t x y′  in (5.26) to the frequency domain and multiplying by the complex weights 

[9] yielding 
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 ,( , , ) ( , , )( , , ) [ ] ( ).m n m nm n m nTrgt f x y f x yR f x y Y Z c f′= +   (5.36) 

This resulting spectrum ( , , )m nR f x y  is used to calculate the FF beam pattern of the 

array, as will be seen in Section E. The corresponding received electrical signal (in V), is 

obtained by computing the inverse Fourier transform of ( , , )m nR f x y  as: 

 1( , , ) { ( , , )}.m n f m nr t x y F R f x y−=   (5.37) 

Once cophased, the outputs can be summed up with (ideally) no destructive 

interference, yielding the resultant received electrical signal at the output of the twin-line 

planar array, ( )r t —the beamformed signal. 

In order to search for targets, the array’s FF beam pattern can be steered by 

varying the steering angles θ ′  and ψ ′ , while the signal ( )r t  is monitored. The 

coordinates ( , )θ ψ′ ′  at which the time-average power avgP  of ( )r t , in W-Ω , given by 

 
2

0,
1 ( ) ,

T

avg rP r t dt
T

= ∫   (5.38) 

reaches its maximum value corresponds to the estimates ˆ ˆ( , )S Sθ ψ  of the target’s location. 

For the purpose of testing, the target was positioned in the XY plane ( Sθ =90°), and the 

steering was executed only in the XY plane (θ  = 90° and θ ′  = 90°), while ψ ′  was varied 

from 0° to 359°, in steps of one degree. Alternatively, instead of evaluating the average 

power sequentially, for every angle ψ ′ , this operation can be carried out simultaneously 

for all angles ψ ′  at once, using parallel signal processing. 

D. FFT BEAMFORMING 

Throughout the description of the signal generator, multiple conversions from 

time to frequency-domain, and vice-versa, using forward }{( )tF •  and inverse }{( )1

fF − •  

Fourier transforms, are performed. Since all signals ( )x t  being processed are sampled, 

both conversions use forward and inverse discrete Fourier transforms (DFT and IDFT, 

respectively). 
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Given a continuous-time signal ( )x t  with frequency spectrum ( )X f , and its 

discrete-time version ( )x l  obtained using a sampling frequency sf , an estimate ˆ ( )X q  of 

( )X f  is given by [9, Sec. 8.5] 

 
1

0

ˆ ( ) { ( )} ( ) , , ... ,0, ... ,
L

s s
l

ql
L ZX q T DFT x l T x l W q L L

−
−

=
+ ′′ ′′= = = −∑   (5.39) 

 1/s sT f=   (5.40) 

 of q f=   (5.41) 

 1

o s

Z L
f T

= −   (5.42) 

 
( ) / 2, even
( 1) / 2, odd
L Z L Z

L
L Z L Z
+ +′′ =  + − +

  (5.43) 

 
2

L Z
j L ZW e

π

+
+=   (5.44) 

where sT  is the sampling period in sec, L  is the number of samples of ( )x l , q  is the 

DFT bin number, of  is the desired DFT bin spacing, and Z  is the integer number of 

zeros required for of . The inverse Fourier transform of ˆ ( )X q  is given by [9, Sec. 8.5] 

{ }1 1 1ˆ ˆ( ) ( ) ( ) , 0,1, ... , 1.
L

q Ls s

ql
L Zx l IDFT X q X q W l L Z

T T L Z

′′

′′= −

+
+= = = + −

+ ∑   (5.45) 

In the actual implementation, both forward and inverse discrete Fourier transforms are 

evaluated using forward and inverse fast Fourier transform algorithms (FFT and IFFT). 

The beamforming step of the signal processing algorithm discussed in Section C 

starts with the received electrical signal ( , , )m nr t x y′  given by Equation (5.26) and 

rewritten below sampled at the rate of sf  Hz: 

 ( , , )( , , ) ( , , )m nl m n l l m nTrgt t x yr t x y y z t x y′ ′ ′= +   (5.46) 
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 1/ , 0,1, ... , 1l s st l T f l L= = = −   (5.47) 

where lt  is the sampling time instant (in sec). The estimate of the complex frequency 

spectrum of ( , , )l m nr t x y′  at discrete frequencies of qf=  is calculated from Equation 

(5.39) yielding 

 ˆ ˆ ˆ( , , ) ( , , ) ( , , ) .m n o m n m n
of q f

R q x y R q f x y R f x y
=

′ ′ ′≡ =   (5.48) 

The discrete version of the complex weights required to cophase the output electrical 

signals can be obtained from Equation (5.35) as follows: 

 ,
, ,

2( ) .o m n
om n m n

j q fc q f a e π τ− ′=   (5.49) 

Next, the beamforming process is accomplished by multiplying ˆ ( , , )m nR q x y′  by the 

complex weights given by Equation (5.49), yielding  

 ,
ˆ ˆ( , , ) ( , , ) ( )m n m n m n oR q x y R q x y c q f′=   (5.50) 

 ,
ˆ ˆ( , , ) ( , , ) ( ).m n m n m n oZ q x y Z q x y c q f′=   (5.51) 

Using Equations (5.36), (5.19), (5.14) and (5.13), ˆ ( , , )m nR q x y  can be rewritten as [9, 

Sec. 8.5] 

 )
,

, ,2 (ˆˆ ˆ( , , ) ( , , ) ( , , )o
m n m n m n m n

m n m nj q fR q x y S q x y a e Z q x yπ ττ +− ′= +   (5.52) 

where ˆ( , , )m nS q x y  is an estimate of the theoretical frequency spectrum  

 
,

,( )1( , , ) ( ) ( )
4

Sm n o
m n

m nf RS f x y f f e
R

α

π
−= − =   (5.53) 

and ˆ ( , , )m nZ q x y  is the estimate of the frequency spectrum of noise after beamforming. 

In addition, for a target located in the FF region of the twin-line planar array, the sum 

, ,m n m nττ  ′+  in Equation (5.52) can be approximated by [9, Sec. 8.5] 

 , ,
1 1( ) ( )m n m n S S X S Yu u m d v v m d
c c

τττ  ′ ′ ′+ ≈ + − + −   (5.54) 
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where Sτ  is the one-way time-delay between the target and the center of the array in sec, 

and Su  and Sv  are the target’s direction cosines. 

Both ˆ( , , )m nR q x y  and its inverse DFT, the received electrical signal ( , , )m nr l x y , 

can be used to estimate the position of a target, as the beam pattern of the array is steered. 

As discussed in Section C, the cophased signals ( , , )m nr l x y  can be summed, yielding the 

resultant output electrical signal ( )r l , whose time-average power is calculated by 

 
1

2

0
,

1 ( ) .
L

l
avg rP r l

L

−

=

= ∑   (5.55) 

The steer angles ( , )θ ψ′ ′  corresponding to the output electrical signal ( )r l  with maximum 

time-average power will be the estimates ˆ ˆ( , )S Sθ ψ  of the target’s location. 

The frequency spectrum ˆ( , , )m nR q x y  can be used to calculate the FF beam pattern of the 

twin-line planar array, which can also indicate the location of the target, by monitoring its 

maximum magnitude as the beam pattern is steered, as will be explained in Section E. 

E. BEAM PATTERNS USING TWO-DIMENSIONAL SPATIAL FFT 

In Chapter IV, where the behavior of the FF beam pattern of the twin-line planar 

array was studied in terms of frequency and steer angle, ( , , )D f θ ψ  was calculated in a 

specific plane—the XY plane, in which the twin-line planar array lies—by setting θ  and 

θ ′  equal to 90° and varying .ψ  For a given frequency f , ( , 90 , )D f ψ°  was plotted vs. 

angle .ψ  

In this Chapter the beam patterns are plotted as a function of both direction 

cosines u  and ,v  which, as will be shown, allows determining the target’s location from 

the beam patterns as they are being steered. The two-dimensional spatial DFT computes 

the beam pattern as a function of both direction cosines, and is calculated by computing 

the spatial DFT of ˆ( , , )m nR q x y  in the X direction, referred to as DFTm , and then uses 
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this result to compute the spatial DFT in the Y direction, referred to as DFTn —though the 

order of computations can be reversed [9, Sec. 8.5]. 

The spatial DFTm  of ˆ( , , )m nR q x y  in the X direction yields the frequency-and-

angular spectrum estimate ˆ( , , )q r nR  given by the following expression, used for linear 

arrays with an even number of elements [9, Appendix 6E] 

/2 /2

1 1

ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ,
X X X X

M M
r r m r r m

m n m n
m m

M Z M Z M Z M Zq r n W R q x y W W R q x y W
′ ′

− −

= =
′+ ′+ ′+ ′+= +∑ ∑R   (5.56) 

where 
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X

X
M Z

j
M ZW e

π

′+

+
′+=   (5.57) 

 , ... ,0,... ,r M M′′ ′′= −   (5.58) 

is the DFT bin number corresponding to discrete spatial frequency ,X Xf r f= ∆  

 
( ) / 2, even
( 1) / 2, odd

X X

X X

M Z M Z
M

M Z M Z
′ ′+ +

′′ =  ′ ′+ − +
  (5.59) 

 / 2M M′ =   (5.60) 

 1
( )X

X X

f
M Z d

∆ =
′+

  (5.61) 

is the spatial-frequency spacing in the X direction (in cycles/m), 

 1 'X
X

Z M
u d
λ

d
= −   (5.62) 

where uδ  is a desired direction cosine u  bin spacing, and XZ  is the integer number of 

zeros required to obtain uδ . 

The next step consists of using ˆ( , , )q r nR  as input to calculate the spatial DFTn  

in the Y direction, yielding the frequency-and-angular spectrum estimate ˆ ( , , )q r sR . The 

calculation makes use of the same expressions given by Equations (5.56) through (5.62), 
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with ˆ( , , )m nR q x y  replaced with ˆ( , , )q r nR , M  with N , M ′  with N ′ , M ′′  with N ′′ , r  

with s , Xf∆  with Yf∆ , XZ  with YZ , Xd  with Yd , and uδ  with .vδ  

The magnitude of the function ˆ ( , , )q r sR  is proportional to the far-field beam 

pattern of the twin-line planar array [9, Sec. 8.5]. The DFT bin numbers r  and s  are 

related to direction cosines ru  and sv  as follows [9, Sec. 8.3]: 

 r
X X

ru
M Z d

λ
=

+
  (5.63) 

 .s
Y Y

sv
N Z d

λ
=

+
  (5.64) 

Recalling that the input for the two-dimensional spatial DFT, ˆ( , , )m nR q x y , depends on 

the sum , ,m n m nττ  ′+  given by Equation (5.54), ˆ ( , , )q r sR  is steered in the direction [9, 
Sec. 8.5] 

 Sru u u u′ ′= = −   (5.65) 

and 

 Ssv v v v′ ′= = −   (5.66) 

in direction-cosine space, where r′  and s′  are the DFT bin numbers corresponding to the 

location of the maximum value of ˆ ( , , )q r sR . The normalized magnitude of ˆ ( , , )q r sR  

is plotted as a function of direction cosines u  and v , as illustrated by the density plots in 

Figure 27. With no beam steering, that is, u′  = 0 and v′  = 0, the maximum magnitude of 

ˆ ( , , )q r sR  is located at ( , )S Su v− − , as shown in Figure 27(a). Using correct beam 

steering, that is, u′ = Su  and v′ = Sv , the maximum magnitude of ˆ ( , , )q r sR  is located at 

(0,0) , as shown in Figure 27(b). 
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(a) (b) 

Figure 27 Normalized magnitude of ˆ ( , , )q r sR  as a function of direction 
cosines u  and v , (a) with no beam steering) and (b) using correct beam 

steering. 

The estimates ˆ ˆ( , )S Sθ ψ  can be calculated from the direction cosines ( , )r su v′ ′  

corresponding to the peak of the density plot with no beam steering in Figure 27(a), using 

the following expressions [9, Sec. 8.5] 

 ( )1 2 2 2 2180ˆ sin ( ) ( ) , ( ) ( ) 1S r s r su v u vθ
π

−
′ ′ ′ ′

°
= + + ≤   (5.67) 

 ( )1180ˆ tan / .S s rv uψ
π

−
′ ′

°
=   (5.68) 

This chapter concludes the theoretical description of the twin-line planar array, 

and its association with an acoustic signal coming from a simulated target and propagated 

through a simple model for the medium. The deployment of this system will be discussed 

in Chapter VI. 
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VI. SIGNAL GENERATOR SIMULATIONS 

This chapter demonstrates the use of the system composed of the signal generator 

and the twin-line planar array to estimate the position of a target. The results will be 

presented as two-dimensional beam patterns. 

A. SIGNAL GENERATOR SETTINGS 

The following parameters and assumptions for medium, twin-line planar array 

and target were adopted. 

1. Medium 

The sound speed c  is set to 1500 m/s, and the density oρ  of seawater is 

approximated to 1000 kg/m3. 

2. Twin-Line Planar Array 

The model of the twin-line planar array with N  = 6 elements per line lying in the 

XY plane sketched in Figure 17 is employed here. The array is dimensioned for a 

maximum operational frequency maxf  = 1000 Hz, which has been considered throughout 

this text. Using Equations (4.18) and (4.19), the interelement spacings Xd  and Yd  are 

equal to 0.375 m and 0.750 m, respectively, and the maximum radial extent of the 

aperture AR  is equal to 1.884 m, calculated from Equation (5.29). 

The elements of the modeled twin-line planar array are assumed to have a RSL 

approximately constant in the frequency range of operation, which is set to 10–1000 Hz. 

For wideband-receiver transducers, the typical range for a RSL is between -220 dB and -

190 dB re 1V/μPa [12]. Considering the operational frequency range and the model’s 

assumption for the array sensors to be omnidirectional point elements, a reasonable 

reference of RSL to be used in the simulation can be taken from the Cetacean 

Research™’s C55 hydrophone datasheet [13]. This transducer is omnidirectional below 

10 kHz [13] and has a RSL approximately constant in the range 20–1000 Hz, as shown in 

Figure 28. Based on this receiving response, a constant RSL equal to -167 dB re 1V/μPa 
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is adopted. Using Equation (5.18), this value corresponds to a RS equal to 10-8.35 V/μPa, 

and the magnitude of the receiver sensitivity function ( )f  defined in Equation (5.17) 

reduces to 

5.35( ) 2x10 .f fπ−==  (6.1) 

Figure 28 Receiving response of the Cetacean Research™’s C55 hydrophone 
(adapted from [13]). 

3. Sound-Source

The function generator simulating the acoustical signal radiated by the target 

produces a rectangular-envelope CW pulse, given by Equation (5.1), 500 msec in length, 

A  m3/sec in amplitude, sampled at sf  = 10 kHz, with carrier frequency of  adjustable 

within the frequency range 10–1000 Hz, and with null phase .ϕ  Therefore, the target’s 

source strength defined by Equation (5.1) and expressed in m3/sec becomes, 
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(6.2) 

The order of magnitude of the noise level radiated by a modern diesel submarine 

at low speed (4 knots) at 1 kHz and 1 m is 120 dB re 1μPa [12, p. 115]. Therefore, using 

Equation (5.5), the corresponding source strength’s amplitude A  is given by 
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 6 120/20 6 3
3 3

2 1x10 x 10 2x10 m /sec.
10 x10

A A− −= → =   (6.3) 

The target is an omnidirectional, point source, as discussed in the theoretical 

model, and the range to the target Sr  is set to 500 m. Substituting Sr  and the lower limit 

of operational wavelength, minλ  = 1.5 m, into the expression for the Fraunhofer (FF) 

range criterion, Equation (5.28), results in 

 2(500m) (7.44 2.414m) (4.55m),S A Ar R Rπ
λ

> >  (6.4) 

ensuring that the sound-source is in the FF region of the twin-line planar array, and thus 

validating the value chosen for Sr . The target is positioned in the XY plane ( Sθ  = 90°), 

and the beam steering will be executed only in the XY plane (θ  = 90° and θ ′  = 90°), 

while ψ ′  will be varied from 0° to 359°. 

B. SIMULATIONS 

Using the parameter values set above for the signal generator and the twin-line 

planar array, simulations were performed for the carrier frequency of  = 1000 Hz and two 

scenarios: no noise and signal plus noise. Two opposite cases were considered initially 

for the target’s bearing angle Sψ : closer to broadside ( Sψ  = 15°), which corresponds to a 

very directive beam pattern, and closer to end-fire ( Sψ  = 55°), with a prominent sidelobe 

at 125°, as shown in Figure 29(a) and (b), respectively. 
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(a) (b) 

Figure 29 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array vs. bearing angle ψ , for the carrier frequency 1000 Hz, 

and beam steered to (a) 15° and (b) 55°. 

1. Target’s Bearing Angle Estimation based on Time-Average Power 

a. Target at Sψ = 15° 

The sequence of plots of the time-average power of the received electrical signal 

( )r t  shown in Figure 30 were obtained by steering the beam pattern of the array from ψ ′  

= 0° to 359°, in steps of 0.1°. The plots correspond to ( )r t  free of noise [Figure 30(a)], 

and corrupted by noise with SNR equal to +3 dB [Figure 30(b)], 0 dB [Figure 30(c)] and 

–3 dB [Figure 30(d)] respectively. The very low level of time-average power of these 

signals (on the order of 10-18) is due to the fact that a pre-amplifier block for the received 

signal was not modeled. 
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(a) (b) 

(c) (d) 

Figure 30 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the 
target located at Sψ  = 15°, with (a) no noise, (b) SNR = +3 dB, (c) SNR 

= 0 dB and (d) SNR = –3 dB. 

For the SNR = 0 dB and +3 dB cases considered, the time-average power peaks 

exactly at ψ ′  = 15°. In the worst scenario (SNR = –3 dB)—illustrated in Figure 31 with a 

plot of ( ,1, 2)Trgty t′  and its noise-corrupted version, ( ,1, 2)r t′ , for array element (1,2)—the 

time-average power peak is at ψ ′  = 14.9°. This good performance lies in the fact that 

when the beamformed signals ( , , )m nr t x y  are summed to yield ( )r t , the weak, cophased 

signals due to the target contained in ( , , )m nr t x y  add constructively to create a strong 

signal, while the zero-mean noise signal’s contributions average out approximately to 
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zero. Additionally, the remaining noise is eliminated during the calculation of the time-

average power of ( )r t . 

 

 

Figure 31 Received electrical signal from element (1, 2) before complex 
weighting [ ( ,1, 2)r t′  in red], in V, and output electrical signal from 

element (1, 2) due to the target only before complex weighting [
( ,1, 2)Trgty t′  in blue], in V, versus time t  , in msec. 

b. Target at Sψ = 55° 

With the target’s bearing angle Sψ  set to 55°, a similar behavior relative to SNR 

was observed, as illustrated in the plots of the time-average power of ( )r t  vs. bearing 

angle ψ ′  in Figure 32. Contrasting the case of Sψ  = 15°, there are two outstanding side 

peaks, located at 119.4° and 273° in the plot with no additive noise [Figure 32(a)]. The 

first side peak was expected, since the beam pattern steered to 55° shows a sidelobe at 

125° [see Figure 29(b)]. 
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(a) (b) 

(c) (d) 

Figure 32 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′ for the 
target located at Sψ  = 55°, with (a) no noise, (b) SNR = +3 dB, (c) SNR 

= 0 dB and (d) SNR = –3 dB. 

Since the side peaks are far lower in magnitude than the main peak located at ψ ′= 

55°, the maximum time-average power criterion for the estimation of Sψ  still holds at Sψ

= 55° with a reasonable margin. These results also indicate that the initially adopted steer 

limit of 55° could be potentially extended farther towards end-fire. Therefore, two 

additional simulations were performed for the target at Sψ = 65° and 75° (but only for the 

limiting cases—no noise and SNR = –3 dB), with the results plotted in Figure 33 and 

Figure 34, respectively, to test this hypothesis. 
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(a) 
 

(b) 

Figure 33 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the 
target located at Sψ  = 65°, with (a) no noise and (b) SNR = –3 dB. 

 

(a) (b) 

Figure 34 Time-average power (in W-Ω) of ( )r t  vs. bearing angle ψ ′  for the 
target located at Sψ  = 75°, with (a) no noise and (b) SNR = –3 dB. 

The time-average power plots for the target located at Sψ  = 65° (Figure 33) show 

two side peaks, approximately at 105°and 275°. The first one is partially merged with the 
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beam pattern steered to 65°, while the second peak seems to correspond to a small 

sidelobe at 270° in the beam pattern, as shown in Figure 35(a). For the target located at 

Sψ = 75°, the correspondence between the time-average power side peak at about 275° 

and the beam pattern sidelobe at 270°, shown in Figure 35(b), is evident. 

Recalling the unexpected side peak at 273° observed in the time-average power 

plot for the target located at Sψ  = 55°—whose corresponding sidelobe in the FF beam 

pattern was not identified—that peak at 273° seems to correspond actually to a small 

sidelobe barely visible at 270° in this beam pattern, which evolves to the big sidelobe 

seen in the beam pattern steered to 75°. 

Since the side peak in the time-average power plot for the target located at Sψ  = 

75° is almost the same magnitude of the main peak, this could lead to an ambiguity in the 

estimation of the bearing angle. Therefore, it is more reasonable to set the limit for 

estimating Sψ  equal to 65°. 

 

(a) (b) 

Figure 35 Normalized, horizontal FF beam patterns in the XY plane of the twin-
line planar array vs. bearing angle ψ , for the carrier frequency 1000 Hz, 

and beam steered to (a) 65° and (b) 75°. 
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2. Estimation of the Target’s Bearing Angle using the Far-Field Beam 
Pattern 

The normalized, magnitude of the frequency-and-angular spectra ˆ ( , , )q r sR  of 

the twin-line planar array as a function of direction cosines u  and v  to be discussed in 

this section were calculated for the operational frequency 1000 Hz, using a time-domain 

FFT followed by a two-dimensional spatial FFT with both bin spacings uδ  and vδ set to 

0.01. As discussed in Chapter V, the magnitude of ˆ ( , , )q r sR  is proportional to the FF 

beam pattern. Therefore, the results obtained in this section from the density plots of the 

normalized, magnitude of the frequency-and-angular spectra also hold for the FF beam 

patterns. 

Each spectrum ˆ( , , )q r sR  is calculated for the target located at given angular 

coordinates ( , )S Sθ ψ , whose direction cosines ( , )S Su v  are obtained using Equations 

(4.13) and (4.15), respectively. The direction cosines ( , )r su v′ ′  corresponding to the peak 

of the density plot are determined in the MATLAB code. As discussed in Chapter V, 

direction cosines ( , )r su v′ ′  with no beam steering are the estimates of the target’s 

direction cosines with opposite signs, that is, 
no beam steering

( , ) ( , )S Sr su v u v′ ′ ≡ − − , and can be 

expressed as the estimates ˆ ˆ( , )S Sθ ψ  by using Equations (5.67) and (5.68), respectively. 

First the target was located at ( , )S Sθ ψ  = (90°, 55°), which corresponds to 

( , )S Su v  = (0.5736, 0.8192). The resulting density plot obtained with no beam steering 

and no additive noise yields direction cosines ( , )r su v′ ′  = (-0.5700, -0.8200) and 

corresponding estimates ˆ ˆ( , )S Sθ ψ  = (87.02 , 55.19 )° ° , as illustrated in Figure 36. 

Therefore, in this case the spectrum yields a good estimation of the target’s location.   

Still referring to the case ( , )S Sθ ψ  = (90°, 55°) and with no noise, Figure 37 shows the 

density plots corresponding to θ ′  = 90° and beam steering angle ψ ′  equal to 40° (a) and 

55° (b). In the case of ψ ′  = 55°, the direction cosines ( , )r su v′ ′  obtained from the density 

plot were equal to (0.0, 0.0), as expected. 
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Figure 36 Normalized, magnitude of the frequency-and-angular spectrum 
ˆ( , , )q r sR  of the twin-line planar array vs. direction cosines u  and v , 

for f  = 1000 Hz, ( , )S Sθ ψ  = (90°, 55°), with no additive noise and no 
beam steering. 

 

 
(a) 

 
(b) 

Figure 37  Normalized, magnitude of the frequency-and-angular spectrum 
ˆ( , , )q r sR  of the twin-line planar array vs. direction cosines u  and v , 

for f  = 1000 Hz, ( , )S Sθ ψ  = (90°, 55°), and no additive noise, steered 
to ψ ′  equal to (a) 40 ° and (b) 55 °. 
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For the target located at ( , )S Sθ ψ  = (90°, 15°), which corresponds to ( , )S Su v  = 

(0.9659, 0.2588), Figure 38(a) shows the density plot with no beam steering and no 

additive noise, which yielded direction cosines ( , )r su v′ ′  = (-0.9700, -0.2600) and 

corresponding estimate ˆSψ  = 15.00° . Note that in this scenario the angle Ŝθ  could not be 

estimated, since 2 2( ) ( )r su v′ ′+  = 1.0085 violates the inequality constraint in Equation 

(5.67). Simulating additive noise with SNR = –3dB and no beam steering yielded the 

density plot shown in Figure 38(b), with ( , )r su v′ ′  = (-0.9900, -0.2600) and 

corresponding estimate ˆSψ  = 14.86° . Again, the estimate Ŝθ  could not be determined, 

since 2 2( ) ( )r su v′ ′+  = 1.0477 also violates the same referred inequality constraint. 

 

 
(a) 

 
(b) 

Figure 38 Normalized, magnitude of the frequency-and-angular spectrum 
ˆ( , , )q r sR  of the twin-line planar array vs. direction cosines u  and v , 

for f  = 1000 Hz, ( , )S Sθ ψ  = (90°, 15°), no beam steering, with (a) no 
noise and (b) additive noise with SNR = –3dB. 

Setting the target location to ( , )S Sθ ψ  = (90°, 65°), which corresponds to ( , )S Su v  

= (0.4226, 0.9063), Figure 39(a) shows the density plot with no beam steering and no 

additive noise, yielding direction cosines ( , )r su v′ ′  = (-0.4200, -0.9100) and 
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corresponding estimate ˆSψ  = 65.22° . The angle Ŝθ  could not be estimated, since 

2 2( ) ( )r su v′ ′+  = 1.0045 violates the inequality in Equation (5.67). Simulating additive 

noise with SNR = –3dB and no beam steering yielded the density plot shown in Figure 

39(b), with ( , )r su v′ ′  = (-0.4300, -0.9000) and corresponding estimates ˆ ˆ( , )S Sθ ψ  = 

(84.21, 64.46° ). 

 

(a) (b) 

Figure 39 Normalized, magnitude of the frequency-and-angular spectrum 
ˆ( , , )q r sR  of the twin-line planar array vs. direction cosines u  and v , 

for f  = 1000 Hz, ( , )S Sθ ψ  = (90°, 65°), no beam steering, with (a) no 
noise and (b) additive noise with SNR = –3dB. 

The estimates of bearing angle Sψ  obtained for the target location ( , )S Sθ ψ  at 

(15°, 90°), (55°, 90°) and (65°, 90°) using the frequency-and-angular spectra ˆ ( , , )q r sR  

were very close to the actual values. The method failed for estimating the angle Sθ , 

except for Sθ  = 65° in the presence of noise with SNR = –3dB.  
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VII. CONCLUSIONS 

A. SUMMARY 

The resolution of port/starboard (PS) ambiguity was investigated for two types of 

towed sonar arrays, a linear array of triplets and a twin-line planar array, in the frequency 

range 10–1000 Hz, where significant components of target’s acoustic signatures typically 

are present. 

The ability to resolve PS ambiguity in a linear array of triplets is based on the 

beam pattern of a single triplet. This research used complex weights derived in [9] for a 

single triplet, which yields a beam pattern with a cardioid shape, ensuring a prominent 

mainlobe either at starboard or at port side. The radius of the single triplet was 

determined by using the upper frequency limit of 1000 Hz, and is equal to 250 mm. 

Throughout the frequency range the single triplet’s beam pattern kept the cardioid shape. 

The horizontal, far-field beam patterns of a linear array of 11 triplets as a function 

of frequency were studied. Below 100 Hz the far-field beam pattern of the linear array of 

triplets looks like the far-field beam pattern of a single triplet. A sharp mainlobe is 

present in the frequency interval 200–1000 Hz when no beam steering is done, 

particularly from 600 Hz on. Beam steering reduces the frequency interval where the 

mainlobe is sharp and free of distortion. The bearing angle steering limit for the tested 

linear array is 45°, for an optimal operational frequency interval of 600–1000 Hz. 

The PS ambiguity rejection in a twin-line planar array is accomplished when its 

interelement spacings in the X and Y directions are set to ¼ and ½ of the operational 

wavelength, respectively [9].  Using these criteria, a twin-line planar array with six 

elements per line was configured using 1000 Hz, yielding a horizontal, far-field beam 

pattern with a single mainlobe, either on the starboard or port side, when no beam 

steering was done. This array is 3.75 m long and the two lines are separated by 0.375 m. 

Any digression from the above criteria led to a progressive loss for the resolution of PS 

ambiguity. At 500 Hz, significant sidelobes appeared. Segmentation of the twin-line 

planar array into sub-arrays mitigates this problem, as demonstrated for a 26-element 
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twin-line planar array configured with three sub-arrays—set to sub-array frequencies 

1000, 333.3, and 200 Hz, respectively—each one compliant with the PS rejection criteria. 

The FFT beamforming capability of the twin-line planar array was assessed by 

means of a signal generator, which was designed to provide the array elements with a 

simulated signal coming from an omnidirectional point-source, propagating through a 

simple medium. The source radiated a rectangular-envelope, CW (continuous wave) 

pulse with a carrier frequency of 1000 Hz. The simulated source strength was based on 

the radiated noise level produced by a modern diesel submarine. The ocean medium was 

modeled as unbounded, viscous, and homogeneous. Ambient ocean noise and receiver 

noise were added to the outputs of the elements, simulated as zero-mean sequences from 

a Gaussian random number generator. The twin-line planar array had the same 

configuration as that mentioned above, with six elements per line, and used the 

specifications of a commercial hydrophone as reference for the receiver sensitivity of its 

sensors. The simulations were performed by setting the target in the same plane as the 

twin-line planar array, at two different bearing angles. As the beam pattern of the array 

was steered by varying the bearing steering angle from 0° to 359°, the time-average 

power of the total output electrical signal from the array was computed. In addition, the 

normalized, magnitude of the frequency-and-angular spectrum ˆ( , , )q r sR , using a time-

domain FFT followed by a two-dimensional spatial FFT was calculated. Results show 

that both methods (time-average power and frequency-and-angular spectrum) used to 

estimate the target’s bearing angle produced very accurate results, for both no noise and 

signal plus noise scenarios (SNR = +3 dB, 0 dB and –3dB). 

B. FUTURE WORK 

The next step is to employ more realistic models for the ocean medium, include 

additional targets and jammers, and simulate relative movement between target and array, 

due to tides in shallow water, target navigation or maneuvers, sensor element vibration 

due to flow noise, and changes in depth and cable twists during the towing—which also 

demand additional features for the twin-line planar array module. 
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The current unbounded and homogenous ocean medium model can be replaced by 

a model which takes into account interactions with the ocean surface (reflection and 

Doppler shift due to wave motion) and bottom (reflection and absorption), and the speed 

of sound as a function of depth, which leads to refraction of sound during propagation. A 

ray tracing algorithm could be used to calculate the propagation of sound in the medium. 

In the case of sources radiating at low frequencies, the acoustic pressure in a wave guide 

model for the medium could be calculated using either normal modes (range-independent 

speed of sound) or the parabolic equation (PE) method (range-dependent speed of sound) 

[14]. Alternatively, instead of implementing these models in MATLAB, one can use 

acoustic channel simulators offered by underwater research institutions, such as the U.S. 

Office of Naval Research. 

Regarding ambient noise, instead of using AWGN (additive white Gaussian 

noise), one could take theoretical and empirical data and spectra for different types of 

noise (wind, rain, ship traffic) available in the literature to incorporate into the model. 

Mathematical equations for receiver noise—both thermal and flow noise are also 

available. Noise due to vibrations and pressure variations caused by vertical motion could 

be modeled as AWGN. 

Concerning the twin-line planar array, the design could be improved with a means 

to reduce the interelement spacing in the X direction. The value of Xd  dimensioned in 

this thesis for the operational frequency 1000 Hz—0.375 m—might be too large for the 

operational limitations discussed in Chapter I . 

     For the case of simulating moving targets, cable twists and flow noise 

vibrations, adaptive beamforming could be employed for target tracking. An 

additional module could be introduced to the system—a detector. Given a specification 

for the probabilities of detection and false-alarm, and the minimum SNR expected at the 

output of the array elements for a given target or group of targets, the detection 

module calculates the required array gain. Based on the array gain, the number of 

elements of the twin-line planar array is determined. 
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APPENDIX. DERIVATION OF THE STANDARD DEVIATION FOR 
A GIVEN SNR. 
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